$L_{p}$-approximation by the method of integral Meyer-König and Zeller operators
Studia Mathematica, Tome 63 (1978) no. 1, pp. 81-88

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/sm-63-1-81-88

Manfred Müller 1

1
@article{10_4064_sm_63_1_81_88,
     author = {Manfred M\"uller},
     title = {$L_{p}$-approximation by the method of integral {Meyer-K\"onig} and {Zeller} operators},
     journal = {Studia Mathematica},
     pages = {81--88},
     publisher = {mathdoc},
     volume = {63},
     number = {1},
     year = {1978},
     doi = {10.4064/sm-63-1-81-88},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-63-1-81-88/}
}
TY  - JOUR
AU  - Manfred Müller
TI  - $L_{p}$-approximation by the method of integral Meyer-König and Zeller operators
JO  - Studia Mathematica
PY  - 1978
SP  - 81
EP  - 88
VL  - 63
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-63-1-81-88/
DO  - 10.4064/sm-63-1-81-88
LA  - en
ID  - 10_4064_sm_63_1_81_88
ER  - 
%0 Journal Article
%A Manfred Müller
%T $L_{p}$-approximation by the method of integral Meyer-König and Zeller operators
%J Studia Mathematica
%D 1978
%P 81-88
%V 63
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-63-1-81-88/
%R 10.4064/sm-63-1-81-88
%G en
%F 10_4064_sm_63_1_81_88
Manfred Müller. $L_{p}$-approximation by the method of integral Meyer-König and Zeller operators. Studia Mathematica, Tome 63 (1978) no. 1, pp. 81-88. doi: 10.4064/sm-63-1-81-88

Cité par Sources :