On the geometric properties of the joint spectrum of a family of self-adjoint operators
Studia Mathematica, Tome 61 (1977) no. 1, pp. 55-62

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/sm-61-1-55-62

Yu. Abramov 1

1
@article{10_4064_sm_61_1_55_62,
     author = {Yu. Abramov},
     title = {On the geometric properties of the joint spectrum of a family of self-adjoint operators},
     journal = {Studia Mathematica},
     pages = {55--62},
     publisher = {mathdoc},
     volume = {61},
     number = {1},
     year = {1977},
     doi = {10.4064/sm-61-1-55-62},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-61-1-55-62/}
}
TY  - JOUR
AU  - Yu. Abramov
TI  - On the geometric properties of the joint spectrum of a family of self-adjoint operators
JO  - Studia Mathematica
PY  - 1977
SP  - 55
EP  - 62
VL  - 61
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-61-1-55-62/
DO  - 10.4064/sm-61-1-55-62
LA  - en
ID  - 10_4064_sm_61_1_55_62
ER  - 
%0 Journal Article
%A Yu. Abramov
%T On the geometric properties of the joint spectrum of a family of self-adjoint operators
%J Studia Mathematica
%D 1977
%P 55-62
%V 61
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-61-1-55-62/
%R 10.4064/sm-61-1-55-62
%G en
%F 10_4064_sm_61_1_55_62
Yu. Abramov. On the geometric properties of the joint spectrum of a family of self-adjoint operators. Studia Mathematica, Tome 61 (1977) no. 1, pp. 55-62. doi: 10.4064/sm-61-1-55-62

Cité par Sources :