In non-locally bounded $L_{φ}$-spaces the norm is not almost transitive
Studia Mathematica, Tome 51 (1974) no. 2, pp. 125-128

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/sm-51-2-125-128

Werner Fischer 1 ; Ulrich Schöler 1

1
@article{10_4064_sm_51_2_125_128,
     author = {Werner Fischer and Ulrich Sch\"oler},
     title = {In non-locally bounded $L_{\ensuremath{\varphi}}$-spaces the norm is not almost transitive},
     journal = {Studia Mathematica},
     pages = {125--128},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {1974},
     doi = {10.4064/sm-51-2-125-128},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-51-2-125-128/}
}
TY  - JOUR
AU  - Werner Fischer
AU  - Ulrich Schöler
TI  - In non-locally bounded $L_{φ}$-spaces the norm is not almost transitive
JO  - Studia Mathematica
PY  - 1974
SP  - 125
EP  - 128
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-51-2-125-128/
DO  - 10.4064/sm-51-2-125-128
LA  - en
ID  - 10_4064_sm_51_2_125_128
ER  - 
%0 Journal Article
%A Werner Fischer
%A Ulrich Schöler
%T In non-locally bounded $L_{φ}$-spaces the norm is not almost transitive
%J Studia Mathematica
%D 1974
%P 125-128
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-51-2-125-128/
%R 10.4064/sm-51-2-125-128
%G en
%F 10_4064_sm_51_2_125_128
Werner Fischer; Ulrich Schöler. In non-locally bounded $L_{φ}$-spaces the norm is not almost transitive. Studia Mathematica, Tome 51 (1974) no. 2, pp. 125-128. doi: 10.4064/sm-51-2-125-128

Cité par Sources :