A fixed point theorem for transformations whose iterates have uniform Lipschitz constant
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 47 (1973) no. 2, pp. 134-140
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_sm_47_2_134_140,
     author = {K. Goebel and W. Kirk},
     title = {A fixed point theorem for transformations whose iterates have uniform {Lipschitz} constant},
     journal = {Studia Mathematica},
     pages = {134--140},
     publisher = {mathdoc},
     volume = {47},
     number = {2},
     year = {1973},
     doi = {10.4064/sm-47-2-134-140},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-47-2-134-140/}
}
                      
                      
                    TY - JOUR AU - K. Goebel AU - W. Kirk TI - A fixed point theorem for transformations whose iterates have uniform Lipschitz constant JO - Studia Mathematica PY - 1973 SP - 134 EP - 140 VL - 47 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-47-2-134-140/ DO - 10.4064/sm-47-2-134-140 LA - en ID - 10_4064_sm_47_2_134_140 ER -
%0 Journal Article %A K. Goebel %A W. Kirk %T A fixed point theorem for transformations whose iterates have uniform Lipschitz constant %J Studia Mathematica %D 1973 %P 134-140 %V 47 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-47-2-134-140/ %R 10.4064/sm-47-2-134-140 %G en %F 10_4064_sm_47_2_134_140
K. Goebel; W. Kirk. A fixed point theorem for transformations whose iterates have uniform Lipschitz constant. Studia Mathematica, Tome 47 (1973) no. 2, pp. 134-140. doi: 10.4064/sm-47-2-134-140
Cité par Sources :
