On Banach spaces X for which $Π_{2}(ℒ_{∞},X)=B(ℒ_{∞},X)$
Studia Mathematica, Tome 44 (1972) no. 6, pp. 617-648
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Affiliations des auteurs :
Ed Dubinsky 1 ; A. Pełczyński 1 ; H. Rosenthal 1
@article{10_4064_sm_44_6_617_648,
author = {Ed Dubinsky and A. Pe{\l}czy\'nski and H. Rosenthal},
title = {On {Banach} spaces {X} for which $\ensuremath{\Pi}_{2}(\ensuremath{\mathscr{L}}_{\ensuremath{\infty}},X)=B(\ensuremath{\mathscr{L}}_{\ensuremath{\infty}},X)$},
journal = {Studia Mathematica},
pages = {617--648},
publisher = {mathdoc},
volume = {44},
number = {6},
year = {1972},
doi = {10.4064/sm-44-6-617-648},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-44-6-617-648/}
}
TY - JOUR
AU - Ed Dubinsky
AU - A. Pełczyński
AU - H. Rosenthal
TI - On Banach spaces X for which $Π_{2}(ℒ_{∞},X)=B(ℒ_{∞},X)$
JO - Studia Mathematica
PY - 1972
SP - 617
EP - 648
VL - 44
IS - 6
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-44-6-617-648/
DO - 10.4064/sm-44-6-617-648
LA - en
ID - 10_4064_sm_44_6_617_648
ER -
%0 Journal Article
%A Ed Dubinsky
%A A. Pełczyński
%A H. Rosenthal
%T On Banach spaces X for which $Π_{2}(ℒ_{∞},X)=B(ℒ_{∞},X)$
%J Studia Mathematica
%D 1972
%P 617-648
%V 44
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-44-6-617-648/
%R 10.4064/sm-44-6-617-648
%G en
%F 10_4064_sm_44_6_617_648
Ed Dubinsky; A. Pełczyński; H. Rosenthal. On Banach spaces X for which $Π_{2}(ℒ_{∞},X)=B(ℒ_{∞},X)$. Studia Mathematica, Tome 44 (1972) no. 6, pp. 617-648. doi: 10.4064/sm-44-6-617-648
Cité par Sources :