Invariant means on $L^{∞}$
Studia Mathematica, Tome 44 (1972) no. 3, pp. 219-227

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/sm-44-3-219-227

Walter Rudin 1

1
@article{10_4064_sm_44_3_219_227,
     author = {Walter Rudin},
     title = {Invariant means on $L^{\ensuremath{\infty}}$},
     journal = {Studia Mathematica},
     pages = {219--227},
     publisher = {mathdoc},
     volume = {44},
     number = {3},
     year = {1972},
     doi = {10.4064/sm-44-3-219-227},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-44-3-219-227/}
}
TY  - JOUR
AU  - Walter Rudin
TI  - Invariant means on $L^{∞}$
JO  - Studia Mathematica
PY  - 1972
SP  - 219
EP  - 227
VL  - 44
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-44-3-219-227/
DO  - 10.4064/sm-44-3-219-227
LA  - en
ID  - 10_4064_sm_44_3_219_227
ER  - 
%0 Journal Article
%A Walter Rudin
%T Invariant means on $L^{∞}$
%J Studia Mathematica
%D 1972
%P 219-227
%V 44
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-44-3-219-227/
%R 10.4064/sm-44-3-219-227
%G en
%F 10_4064_sm_44_3_219_227
Walter Rudin. Invariant means on $L^{∞}$. Studia Mathematica, Tome 44 (1972) no. 3, pp. 219-227. doi: 10.4064/sm-44-3-219-227

Cité par Sources :