Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basic
Studia Mathematica, Tome 40 (1971) no. 3, pp. 239-243
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_sm_40_3_239_243,
author = {A. Pe{\l}czy\'nski},
title = {Any separable {Banach} space with the bounded approximation property is a complemented subspace of a {Banach} space with a basic},
journal = {Studia Mathematica},
pages = {239--243},
publisher = {mathdoc},
volume = {40},
number = {3},
year = {1971},
doi = {10.4064/sm-40-3-239-243},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-40-3-239-243/}
}
TY - JOUR AU - A. Pełczyński TI - Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basic JO - Studia Mathematica PY - 1971 SP - 239 EP - 243 VL - 40 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-40-3-239-243/ DO - 10.4064/sm-40-3-239-243 LA - en ID - 10_4064_sm_40_3_239_243 ER -
%0 Journal Article %A A. Pełczyński %T Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basic %J Studia Mathematica %D 1971 %P 239-243 %V 40 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-40-3-239-243/ %R 10.4064/sm-40-3-239-243 %G en %F 10_4064_sm_40_3_239_243
A. Pełczyński. Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basic. Studia Mathematica, Tome 40 (1971) no. 3, pp. 239-243. doi: 10.4064/sm-40-3-239-243
Cité par Sources :