Sobolev embeddings with variable exponent
Studia Mathematica, Tome 143 (2000) no. 3, pp. 267-293

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let Ω be a bounded open subset of $ℝ^{n}$ with Lipschitz boundary and let $p:\overline{Ω} → [1,∞)$ be Lipschitz-continuous. We consider the generalised Lebesgue space $L^{p(x)}(Ω)$ and the corresponding Sobolev space $W^{1,p(x)}(Ω)$, consisting of all $f ∈ L^{p(x)}(Ω)$ with first-order distributional derivatives in $L^{p(x)}(Ω)$. It is shown that if 1 ≤ p(x) n for all x ∈ Ω, then there is a constant c > 0 such that for all $f∈ W^{1,p(x)}(Ω)$, $|f|_{M,Ω} ≤ c|f|_{1,p,Ω}$. Here $|·|_{M,Ω}$ is the norm on an appropriate space of Orlicz-Musielak type and $|·|_{1,p,Ω}$ is the norm on $W^{1, p(x)}(Ω)$. The inequality reduces to the usual Sobolev inequality if $sup_Ω p
DOI : 10.4064/sm-143-3-267-293

David Edmunds 1 ; Jiří Rákosník 1

1
@article{10_4064_sm_143_3_267_293,
     author = {David Edmunds and Ji\v{r}{\'\i} R\'akosn{\'\i}k},
     title = {Sobolev embeddings with variable exponent},
     journal = {Studia Mathematica},
     pages = {267--293},
     publisher = {mathdoc},
     volume = {143},
     number = {3},
     year = {2000},
     doi = {10.4064/sm-143-3-267-293},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-143-3-267-293/}
}
TY  - JOUR
AU  - David Edmunds
AU  - Jiří Rákosník
TI  - Sobolev embeddings with variable exponent
JO  - Studia Mathematica
PY  - 2000
SP  - 267
EP  - 293
VL  - 143
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-143-3-267-293/
DO  - 10.4064/sm-143-3-267-293
LA  - en
ID  - 10_4064_sm_143_3_267_293
ER  - 
%0 Journal Article
%A David Edmunds
%A Jiří Rákosník
%T Sobolev embeddings with variable exponent
%J Studia Mathematica
%D 2000
%P 267-293
%V 143
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-143-3-267-293/
%R 10.4064/sm-143-3-267-293
%G en
%F 10_4064_sm_143_3_267_293
David Edmunds; Jiří Rákosník. Sobolev embeddings with variable exponent. Studia Mathematica, Tome 143 (2000) no. 3, pp. 267-293. doi: 10.4064/sm-143-3-267-293

Cité par Sources :