Extension maps in ultradifferentiable and ultraholomorphic function spaces
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 143 (2000) no. 3, pp. 221-250
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              The problem of the existence of extension maps from 0 to ℝ in the setting of the classical ultradifferentiable function spaces has been solved by Petzsche [9] by proving a generalization of the Borel and Mityagin theorems for $C^{∞}$-spaces. We get a Ritt type improvement, i.e. from 0 to sectors of the Riemann surface of the function log for spaces of ultraholomorphic functions, by first establishing a generalization to some nonclassical ultradifferentiable function spaces.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
extension map, ultradifferentiable function, Roumieu type, Beurling type
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Jean Schmets 1 ; Manuel Valdivia 1
@article{10_4064_sm_143_3_221_250,
     author = {Jean Schmets and Manuel Valdivia},
     title = {Extension maps in ultradifferentiable and ultraholomorphic function spaces},
     journal = {Studia Mathematica},
     pages = {221--250},
     publisher = {mathdoc},
     volume = {143},
     number = {3},
     year = {2000},
     doi = {10.4064/sm-143-3-221-250},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-143-3-221-250/}
}
                      
                      
                    TY - JOUR AU - Jean Schmets AU - Manuel Valdivia TI - Extension maps in ultradifferentiable and ultraholomorphic function spaces JO - Studia Mathematica PY - 2000 SP - 221 EP - 250 VL - 143 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-143-3-221-250/ DO - 10.4064/sm-143-3-221-250 LA - en ID - 10_4064_sm_143_3_221_250 ER -
%0 Journal Article %A Jean Schmets %A Manuel Valdivia %T Extension maps in ultradifferentiable and ultraholomorphic function spaces %J Studia Mathematica %D 2000 %P 221-250 %V 143 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-143-3-221-250/ %R 10.4064/sm-143-3-221-250 %G en %F 10_4064_sm_143_3_221_250
Jean Schmets; Manuel Valdivia. Extension maps in ultradifferentiable and ultraholomorphic function spaces. Studia Mathematica, Tome 143 (2000) no. 3, pp. 221-250. doi: 10.4064/sm-143-3-221-250
Cité par Sources :
