Extension maps in ultradifferentiable and ultraholomorphic function spaces
Studia Mathematica, Tome 143 (2000) no. 3, pp. 221-250
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The problem of the existence of extension maps from 0 to ℝ in the setting of the classical ultradifferentiable function spaces has been solved by Petzsche [9] by proving a generalization of the Borel and Mityagin theorems for $C^{∞}$-spaces. We get a Ritt type improvement, i.e. from 0 to sectors of the Riemann surface of the function log for spaces of ultraholomorphic functions, by first establishing a generalization to some nonclassical ultradifferentiable function spaces.
Keywords:
extension map, ultradifferentiable function, Roumieu type, Beurling type
@article{10_4064_sm_143_3_221_250,
author = {Jean Schmets and Manuel Valdivia},
title = {Extension maps in ultradifferentiable and ultraholomorphic function spaces},
journal = {Studia Mathematica},
pages = {221--250},
year = {2000},
volume = {143},
number = {3},
doi = {10.4064/sm-143-3-221-250},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-143-3-221-250/}
}
TY - JOUR AU - Jean Schmets AU - Manuel Valdivia TI - Extension maps in ultradifferentiable and ultraholomorphic function spaces JO - Studia Mathematica PY - 2000 SP - 221 EP - 250 VL - 143 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-143-3-221-250/ DO - 10.4064/sm-143-3-221-250 LA - en ID - 10_4064_sm_143_3_221_250 ER -
%0 Journal Article %A Jean Schmets %A Manuel Valdivia %T Extension maps in ultradifferentiable and ultraholomorphic function spaces %J Studia Mathematica %D 2000 %P 221-250 %V 143 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/sm-143-3-221-250/ %R 10.4064/sm-143-3-221-250 %G en %F 10_4064_sm_143_3_221_250
Jean Schmets; Manuel Valdivia. Extension maps in ultradifferentiable and ultraholomorphic function spaces. Studia Mathematica, Tome 143 (2000) no. 3, pp. 221-250. doi: 10.4064/sm-143-3-221-250
Cité par Sources :