Selfsimilar profiles in large time asymptotics of solutions to damped wave equations
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 143 (2000) no. 2, pp. 175-197
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Large time behavior of solutions to the generalized damped wave equation $u_{tt} +A u_t +ν B u+F(x,t,u,u_t,∇ u) = 0$ for $(x,t)∈ ℝ^n × [0,∞)$ is studied. First, we consider the linear nonhomogeneous equation, i.e. with F = F(x,t) independent of u. We impose conditions on the operators A and B, on F, as well as on the initial data which lead to the selfsimilar large time asymptotics of solutions. Next, this abstract result is applied to the equation where $Au_t = u_t$, $Bu = -Δu$, and the nonlinear term is either $|u_t|^{q-1}u_t$ or $|u|^{α-1}u$. In this case, the asymptotic profile of solutions is given by a multiple of the Gauss-Weierstrass kernel. Our method of proof does not require the smallness assumption on the initial conditions.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
generalized wave equation with damping, the Cauchy problem, large time behavior of solutions, selfsimilar solutions
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              Grzegorz Karch 1
@article{10_4064_sm_143_2_175_197,
     author = {Grzegorz Karch},
     title = {Selfsimilar profiles in large time asymptotics of solutions to damped wave equations},
     journal = {Studia Mathematica},
     pages = {175--197},
     publisher = {mathdoc},
     volume = {143},
     number = {2},
     year = {2000},
     doi = {10.4064/sm-143-2-175-197},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-143-2-175-197/}
}
                      
                      
                    TY - JOUR AU - Grzegorz Karch TI - Selfsimilar profiles in large time asymptotics of solutions to damped wave equations JO - Studia Mathematica PY - 2000 SP - 175 EP - 197 VL - 143 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-143-2-175-197/ DO - 10.4064/sm-143-2-175-197 LA - en ID - 10_4064_sm_143_2_175_197 ER -
%0 Journal Article %A Grzegorz Karch %T Selfsimilar profiles in large time asymptotics of solutions to damped wave equations %J Studia Mathematica %D 2000 %P 175-197 %V 143 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-143-2-175-197/ %R 10.4064/sm-143-2-175-197 %G en %F 10_4064_sm_143_2_175_197
Grzegorz Karch. Selfsimilar profiles in large time asymptotics of solutions to damped wave equations. Studia Mathematica, Tome 143 (2000) no. 2, pp. 175-197. doi: 10.4064/sm-143-2-175-197
Cité par Sources :
