Discrete Wiener-Hopf operators on spaces with Muckenhoupt weight
Studia Mathematica, Tome 143 (2000) no. 2, pp. 121-144

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The discrete Wiener-Hopf operator generated by a function $a(e^{iθ})$ with the Fourier series $∑_{n∈ℤ} a_n e^{inθ}$ is the operator T(a) induced by the Toeplitz matrix $(a_{j-k})_{j,k = 0}^∞$ on some weighted sequence space $l^p(ℤ_{+}, w)$. We assume that w satisfies the Muckenhoupt $A_p$ condition and that a is a piecewise continuous function subject to some natural multiplier condition. The last condition is in particular satisfied if a is of bounded variation. Our main result is a Fredholm criterion and an index formula for T(a). It implies that the essential spectrum of T(a) results from the essential range of a by filling in certain horns between the endpoints of each jump. The shape of these horns is determined by the indices of powerlikeness of the weight w.
DOI : 10.4064/sm-143-2-121-144

A. Böttcher 1 ; M. Seybold 1

1
@article{10_4064_sm_143_2_121_144,
     author = {A. B\"ottcher and M. Seybold},
     title = {Discrete {Wiener-Hopf} operators on spaces with {Muckenhoupt} weight},
     journal = {Studia Mathematica},
     pages = {121--144},
     publisher = {mathdoc},
     volume = {143},
     number = {2},
     year = {2000},
     doi = {10.4064/sm-143-2-121-144},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-143-2-121-144/}
}
TY  - JOUR
AU  - A. Böttcher
AU  - M. Seybold
TI  - Discrete Wiener-Hopf operators on spaces with Muckenhoupt weight
JO  - Studia Mathematica
PY  - 2000
SP  - 121
EP  - 144
VL  - 143
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-143-2-121-144/
DO  - 10.4064/sm-143-2-121-144
LA  - en
ID  - 10_4064_sm_143_2_121_144
ER  - 
%0 Journal Article
%A A. Böttcher
%A M. Seybold
%T Discrete Wiener-Hopf operators on spaces with Muckenhoupt weight
%J Studia Mathematica
%D 2000
%P 121-144
%V 143
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-143-2-121-144/
%R 10.4064/sm-143-2-121-144
%G en
%F 10_4064_sm_143_2_121_144
A. Böttcher; M. Seybold. Discrete Wiener-Hopf operators on spaces with Muckenhoupt weight. Studia Mathematica, Tome 143 (2000) no. 2, pp. 121-144. doi: 10.4064/sm-143-2-121-144

Cité par Sources :