The asymptotics of the Perron-Frobenius operator of a class of interval maps preserving infinite measures
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 143 (2000) no. 2, pp. 103-119
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We determine the asymptotic behaviour of the iterates of the Perron-Frobenius operator for specific interval maps with an indifferent fixed point which gives rise to an infinite invariant measure.
            
            
            
          
        
      @article{10_4064_sm_143_2_103_119,
     author = {Maximilian Thaler},
     title = {The asymptotics of the {Perron-Frobenius} operator of a class of interval maps preserving infinite measures},
     journal = {Studia Mathematica},
     pages = {103--119},
     publisher = {mathdoc},
     volume = {143},
     number = {2},
     year = {2000},
     doi = {10.4064/sm-143-2-103-119},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-143-2-103-119/}
}
                      
                      
                    TY - JOUR AU - Maximilian Thaler TI - The asymptotics of the Perron-Frobenius operator of a class of interval maps preserving infinite measures JO - Studia Mathematica PY - 2000 SP - 103 EP - 119 VL - 143 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-143-2-103-119/ DO - 10.4064/sm-143-2-103-119 LA - en ID - 10_4064_sm_143_2_103_119 ER -
%0 Journal Article %A Maximilian Thaler %T The asymptotics of the Perron-Frobenius operator of a class of interval maps preserving infinite measures %J Studia Mathematica %D 2000 %P 103-119 %V 143 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-143-2-103-119/ %R 10.4064/sm-143-2-103-119 %G en %F 10_4064_sm_143_2_103_119
Maximilian Thaler. The asymptotics of the Perron-Frobenius operator of a class of interval maps preserving infinite measures. Studia Mathematica, Tome 143 (2000) no. 2, pp. 103-119. doi: 10.4064/sm-143-2-103-119
Cité par Sources :
