Banach principle in the space of τ-measurable operators
Studia Mathematica, Tome 143 (2000) no. 1, pp. 33-41 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

We establish a non-commutative analog of the classical Banach Principle on the almost everywhere convergence of sequences of measurable functions. The result is stated in terms of quasi-uniform (or almost uniform) convergence of sequences of measurable (with respect to a trace) operators affiliated with a semifinite von Neumann algebra. Then we discuss possible applications of this result.
@article{10_4064_sm_143_1_33_41,
     author = {Michael Goldstein and Semyon Litvinov},
     title = {Banach principle in the space of \ensuremath{\tau}-measurable operators},
     journal = {Studia Mathematica},
     pages = {33--41},
     year = {2000},
     volume = {143},
     number = {1},
     doi = {10.4064/sm-143-1-33-41},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-143-1-33-41/}
}
TY  - JOUR
AU  - Michael Goldstein
AU  - Semyon Litvinov
TI  - Banach principle in the space of τ-measurable operators
JO  - Studia Mathematica
PY  - 2000
SP  - 33
EP  - 41
VL  - 143
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-143-1-33-41/
DO  - 10.4064/sm-143-1-33-41
LA  - en
ID  - 10_4064_sm_143_1_33_41
ER  - 
%0 Journal Article
%A Michael Goldstein
%A Semyon Litvinov
%T Banach principle in the space of τ-measurable operators
%J Studia Mathematica
%D 2000
%P 33-41
%V 143
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-143-1-33-41/
%R 10.4064/sm-143-1-33-41
%G en
%F 10_4064_sm_143_1_33_41
Michael Goldstein; Semyon Litvinov. Banach principle in the space of τ-measurable operators. Studia Mathematica, Tome 143 (2000) no. 1, pp. 33-41. doi: 10.4064/sm-143-1-33-41

Cité par Sources :