Banach principle in the space of τ-measurable operators
Studia Mathematica, Tome 143 (2000) no. 1, pp. 33-41
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We establish a non-commutative analog of the classical Banach Principle on the almost everywhere convergence of sequences of measurable functions. The result is stated in terms of quasi-uniform (or almost uniform) convergence of sequences of measurable (with respect to a trace) operators affiliated with a semifinite von Neumann algebra. Then we discuss possible applications of this result.
@article{10_4064_sm_143_1_33_41,
author = {Michael Goldstein and Semyon Litvinov},
title = {Banach principle in the space of \ensuremath{\tau}-measurable operators},
journal = {Studia Mathematica},
pages = {33--41},
year = {2000},
volume = {143},
number = {1},
doi = {10.4064/sm-143-1-33-41},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-143-1-33-41/}
}
TY - JOUR AU - Michael Goldstein AU - Semyon Litvinov TI - Banach principle in the space of τ-measurable operators JO - Studia Mathematica PY - 2000 SP - 33 EP - 41 VL - 143 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-143-1-33-41/ DO - 10.4064/sm-143-1-33-41 LA - en ID - 10_4064_sm_143_1_33_41 ER -
Michael Goldstein; Semyon Litvinov. Banach principle in the space of τ-measurable operators. Studia Mathematica, Tome 143 (2000) no. 1, pp. 33-41. doi: 10.4064/sm-143-1-33-41
Cité par Sources :