Numerical index of vector-valued function spaces
Studia Mathematica, Tome 142 (2000) no. 3, pp. 269-280

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that the numerical index of a $c_0$-, $l_1$-, or $l_∞$-sum of Banach spaces is the infimum of the numerical indices of the summands. Moreover, we prove that the spaces C(K,X) and $L_1(μ,X)$ (K any compact Hausdorff space, μ any positive measure) have the same numerical index as the Banach space X. We also observe that these spaces have the so-called Daugavet property whenever X has the Daugavet property.
DOI : 10.4064/sm-142-3-269-280

Miguel Martín 1 ; Rafael Payá 1

1
@article{10_4064_sm_142_3_269_280,
     author = {Miguel Mart{\'\i}n and Rafael Pay\'a},
     title = {Numerical index of vector-valued function spaces},
     journal = {Studia Mathematica},
     pages = {269--280},
     publisher = {mathdoc},
     volume = {142},
     number = {3},
     year = {2000},
     doi = {10.4064/sm-142-3-269-280},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-142-3-269-280/}
}
TY  - JOUR
AU  - Miguel Martín
AU  - Rafael Payá
TI  - Numerical index of vector-valued function spaces
JO  - Studia Mathematica
PY  - 2000
SP  - 269
EP  - 280
VL  - 142
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-142-3-269-280/
DO  - 10.4064/sm-142-3-269-280
LA  - en
ID  - 10_4064_sm_142_3_269_280
ER  - 
%0 Journal Article
%A Miguel Martín
%A Rafael Payá
%T Numerical index of vector-valued function spaces
%J Studia Mathematica
%D 2000
%P 269-280
%V 142
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-142-3-269-280/
%R 10.4064/sm-142-3-269-280
%G en
%F 10_4064_sm_142_3_269_280
Miguel Martín; Rafael Payá. Numerical index of vector-valued function spaces. Studia Mathematica, Tome 142 (2000) no. 3, pp. 269-280. doi: 10.4064/sm-142-3-269-280

Cité par Sources :