Numerical index of vector-valued function spaces
Studia Mathematica, Tome 142 (2000) no. 3, pp. 269-280
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that the numerical index of a $c_0$-, $l_1$-, or $l_∞$-sum of Banach spaces is the infimum of the numerical indices of the summands. Moreover, we prove that the spaces C(K,X) and $L_1(μ,X)$ (K any compact Hausdorff space, μ any positive measure) have the same numerical index as the Banach space X. We also observe that these spaces have the so-called Daugavet property whenever X has the Daugavet property.
Affiliations des auteurs :
Miguel Martín 1 ; Rafael Payá 1
@article{10_4064_sm_142_3_269_280,
author = {Miguel Mart{\'\i}n and Rafael Pay\'a},
title = {Numerical index of vector-valued function spaces},
journal = {Studia Mathematica},
pages = {269--280},
publisher = {mathdoc},
volume = {142},
number = {3},
year = {2000},
doi = {10.4064/sm-142-3-269-280},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-142-3-269-280/}
}
TY - JOUR AU - Miguel Martín AU - Rafael Payá TI - Numerical index of vector-valued function spaces JO - Studia Mathematica PY - 2000 SP - 269 EP - 280 VL - 142 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-142-3-269-280/ DO - 10.4064/sm-142-3-269-280 LA - en ID - 10_4064_sm_142_3_269_280 ER -
Miguel Martín; Rafael Payá. Numerical index of vector-valued function spaces. Studia Mathematica, Tome 142 (2000) no. 3, pp. 269-280. doi: 10.4064/sm-142-3-269-280
Cité par Sources :