Weakly mixing but not mixing quasi-Markovian processes
Studia Mathematica, Tome 142 (2000) no. 3, pp. 235-244

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let (f,α) be the process given by an endomorphism f and by a finite partition $α = {A_i}_{i=1}^{s}$ of a Lebesgue space. Let E(f,α) be the class of densities of absolutely continuous invariant measures for skew products with the base (f,α). We say that (f,α) is quasi-Markovian if $E(f,α) ⊂ { g: ⋁_{{B_i}_{i=1}^s} supp g = ⋃ _{i=1}^{s} A_{i} × B_i}$. We show that there exists a quasi-Markovian process which is weakly mixing but not mixing. As a by-product we deduce that the set of all coboundaries which are measurable with respect to the 'chequer-wise' partition for σ × S, where σ is a Bernoulli shift and S is a weakly mixing automorphism, consists of constants.
DOI : 10.4064/sm-142-3-235-244

Zbigniew Kowalski 1

1
@article{10_4064_sm_142_3_235_244,
     author = {Zbigniew Kowalski},
     title = {Weakly mixing but not mixing {quasi-Markovian} processes},
     journal = {Studia Mathematica},
     pages = {235--244},
     publisher = {mathdoc},
     volume = {142},
     number = {3},
     year = {2000},
     doi = {10.4064/sm-142-3-235-244},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-142-3-235-244/}
}
TY  - JOUR
AU  - Zbigniew Kowalski
TI  - Weakly mixing but not mixing quasi-Markovian processes
JO  - Studia Mathematica
PY  - 2000
SP  - 235
EP  - 244
VL  - 142
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-142-3-235-244/
DO  - 10.4064/sm-142-3-235-244
LA  - en
ID  - 10_4064_sm_142_3_235_244
ER  - 
%0 Journal Article
%A Zbigniew Kowalski
%T Weakly mixing but not mixing quasi-Markovian processes
%J Studia Mathematica
%D 2000
%P 235-244
%V 142
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-142-3-235-244/
%R 10.4064/sm-142-3-235-244
%G en
%F 10_4064_sm_142_3_235_244
Zbigniew Kowalski. Weakly mixing but not mixing quasi-Markovian processes. Studia Mathematica, Tome 142 (2000) no. 3, pp. 235-244. doi: 10.4064/sm-142-3-235-244

Cité par Sources :