Dimension of a measure
Studia Mathematica, Tome 142 (2000) no. 3, pp. 219-233

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We propose a framework to define dimensions of Borel measures in a metric space by formulating a set of natural properties for a measure-dimension mapping, namely monotonicity, bi-Lipschitz invariance, (σ-)stability, etc. We study the behaviour of most popular definitions of measure dimensions in regard to our list, with special attention to the standard correlation dimensions and their modified versions.
DOI : 10.4064/sm-142-3-219-233

Pertti Mattila 1 ; Manuel Morán 1 ; José-Manuel Rey 1

1
@article{10_4064_sm_142_3_219_233,
     author = {Pertti Mattila and Manuel Mor\'an and Jos\'e-Manuel Rey},
     title = {Dimension of a measure},
     journal = {Studia Mathematica},
     pages = {219--233},
     publisher = {mathdoc},
     volume = {142},
     number = {3},
     year = {2000},
     doi = {10.4064/sm-142-3-219-233},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-142-3-219-233/}
}
TY  - JOUR
AU  - Pertti Mattila
AU  - Manuel Morán
AU  - José-Manuel Rey
TI  - Dimension of a measure
JO  - Studia Mathematica
PY  - 2000
SP  - 219
EP  - 233
VL  - 142
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-142-3-219-233/
DO  - 10.4064/sm-142-3-219-233
LA  - en
ID  - 10_4064_sm_142_3_219_233
ER  - 
%0 Journal Article
%A Pertti Mattila
%A Manuel Morán
%A José-Manuel Rey
%T Dimension of a measure
%J Studia Mathematica
%D 2000
%P 219-233
%V 142
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-142-3-219-233/
%R 10.4064/sm-142-3-219-233
%G en
%F 10_4064_sm_142_3_219_233
Pertti Mattila; Manuel Morán; José-Manuel Rey. Dimension of a measure. Studia Mathematica, Tome 142 (2000) no. 3, pp. 219-233. doi: 10.4064/sm-142-3-219-233

Cité par Sources :