Dimension of a measure
Studia Mathematica, Tome 142 (2000) no. 3, pp. 219-233
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We propose a framework to define dimensions of Borel measures in a metric space by formulating a set of natural properties for a measure-dimension mapping, namely monotonicity, bi-Lipschitz invariance, (σ-)stability, etc. We study the behaviour of most popular definitions of measure dimensions in regard to our list, with special attention to the standard correlation dimensions and their modified versions.
@article{10_4064_sm_142_3_219_233,
author = {Pertti Mattila and Manuel Mor\'an and Jos\'e-Manuel Rey},
title = {Dimension of a measure},
journal = {Studia Mathematica},
pages = {219--233},
year = {2000},
volume = {142},
number = {3},
doi = {10.4064/sm-142-3-219-233},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-142-3-219-233/}
}
TY - JOUR AU - Pertti Mattila AU - Manuel Morán AU - José-Manuel Rey TI - Dimension of a measure JO - Studia Mathematica PY - 2000 SP - 219 EP - 233 VL - 142 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-142-3-219-233/ DO - 10.4064/sm-142-3-219-233 LA - en ID - 10_4064_sm_142_3_219_233 ER -
Pertti Mattila; Manuel Morán; José-Manuel Rey. Dimension of a measure. Studia Mathematica, Tome 142 (2000) no. 3, pp. 219-233. doi: 10.4064/sm-142-3-219-233
Cité par Sources :