On α-times integrated C-semigroups and the abstract Cauchy problem
Studia Mathematica, Tome 142 (2000) no. 3, pp. 201-217
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
This paper is concerned with α-times integrated C-semigroups for α > 0 and the associated abstract Cauchy problem: $u'(t) = Au(t) + \frac{t^{α-1}}{Γ(α)}x$, t >0; u(0) = 0. We first investigate basic properties of an α-times integrated C-semigroup which may not be exponentially bounded. We then characterize the generator A of an exponentially bounded α-times integrated C-semigroup, either in terms of its Laplace transforms or in terms of existence of a unique solution of the above abstract Cauchy problem for every x in $(λ-A)^{-1}C(X)$.
Keywords:
generator, abstract Cauchy problem, α-times integrated C-semigroup
Affiliations des auteurs :
Chung-Cheng Kuo 1 ; Sen-Yen Shaw 1
@article{10_4064_sm_142_3_201_217,
author = {Chung-Cheng Kuo and Sen-Yen Shaw},
title = {On \ensuremath{\alpha}-times integrated {C-semigroups} and the abstract {Cauchy} problem},
journal = {Studia Mathematica},
pages = {201--217},
publisher = {mathdoc},
volume = {142},
number = {3},
year = {2000},
doi = {10.4064/sm-142-3-201-217},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-142-3-201-217/}
}
TY - JOUR AU - Chung-Cheng Kuo AU - Sen-Yen Shaw TI - On α-times integrated C-semigroups and the abstract Cauchy problem JO - Studia Mathematica PY - 2000 SP - 201 EP - 217 VL - 142 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-142-3-201-217/ DO - 10.4064/sm-142-3-201-217 LA - en ID - 10_4064_sm_142_3_201_217 ER -
%0 Journal Article %A Chung-Cheng Kuo %A Sen-Yen Shaw %T On α-times integrated C-semigroups and the abstract Cauchy problem %J Studia Mathematica %D 2000 %P 201-217 %V 142 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-142-3-201-217/ %R 10.4064/sm-142-3-201-217 %G en %F 10_4064_sm_142_3_201_217
Chung-Cheng Kuo; Sen-Yen Shaw. On α-times integrated C-semigroups and the abstract Cauchy problem. Studia Mathematica, Tome 142 (2000) no. 3, pp. 201-217. doi: 10.4064/sm-142-3-201-217
Cité par Sources :