The space of real-analytic functions has no basis
Studia Mathematica, Tome 142 (2000) no. 2, pp. 187-200
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let Ω be an open connected subset of $ℝ^d$. We show that the space A(Ω) of real-analytic functions on Ω has no (Schauder) basis. One of the crucial steps is to show that all metrizable complemented subspaces of A(Ω) are finite-dimensional.
Keywords:
LB-space, Fréchet space, Schauder basis, Köthe sequence space, complemented subspace, space of real-analytic functions
Affiliations des auteurs :
Paweł Domański 1 ; Dietmar Vogt 1
@article{10_4064_sm_142_2_187_200,
author = {Pawe{\l} Doma\'nski and Dietmar Vogt},
title = {The space of real-analytic functions has no basis},
journal = {Studia Mathematica},
pages = {187--200},
publisher = {mathdoc},
volume = {142},
number = {2},
year = {2000},
doi = {10.4064/sm-142-2-187-200},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-142-2-187-200/}
}
TY - JOUR AU - Paweł Domański AU - Dietmar Vogt TI - The space of real-analytic functions has no basis JO - Studia Mathematica PY - 2000 SP - 187 EP - 200 VL - 142 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-142-2-187-200/ DO - 10.4064/sm-142-2-187-200 LA - en ID - 10_4064_sm_142_2_187_200 ER -
Paweł Domański; Dietmar Vogt. The space of real-analytic functions has no basis. Studia Mathematica, Tome 142 (2000) no. 2, pp. 187-200. doi: 10.4064/sm-142-2-187-200
Cité par Sources :