Axiomatic theory of spectrum III: semiregularities
Studia Mathematica, Tome 142 (2000) no. 2, pp. 159-169
We introduce and study the notions of upper and lower semiregularities in Banach algebras. These notions generalize the previously studied notion of regularity - a class is a regularity if and only if it is both upper and lower semiregularity. Each semiregularity defines in a natural way a spectrum which satisfies a one-way spectral mapping property (the spectrum defined by a regularity satisfies the both-ways spectral mapping property).
@article{10_4064_sm_142_2_159_169,
author = {Vladim{\'\i}r M\"uller},
title = {Axiomatic theory of spectrum {III:} semiregularities},
journal = {Studia Mathematica},
pages = {159--169},
year = {2000},
volume = {142},
number = {2},
doi = {10.4064/sm-142-2-159-169},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-142-2-159-169/}
}
Vladimír Müller. Axiomatic theory of spectrum III: semiregularities. Studia Mathematica, Tome 142 (2000) no. 2, pp. 159-169. doi: 10.4064/sm-142-2-159-169
Cité par Sources :