Axiomatic theory of spectrum III: semiregularities
Studia Mathematica, Tome 142 (2000) no. 2, pp. 159-169

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We introduce and study the notions of upper and lower semiregularities in Banach algebras. These notions generalize the previously studied notion of regularity - a class is a regularity if and only if it is both upper and lower semiregularity. Each semiregularity defines in a natural way a spectrum which satisfies a one-way spectral mapping property (the spectrum defined by a regularity satisfies the both-ways spectral mapping property).
DOI : 10.4064/sm-142-2-159-169

Vladimír Müller 1

1
@article{10_4064_sm_142_2_159_169,
     author = {Vladim{\'\i}r M\"uller},
     title = {Axiomatic theory of spectrum {III:} semiregularities},
     journal = {Studia Mathematica},
     pages = {159--169},
     publisher = {mathdoc},
     volume = {142},
     number = {2},
     year = {2000},
     doi = {10.4064/sm-142-2-159-169},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-142-2-159-169/}
}
TY  - JOUR
AU  - Vladimír Müller
TI  - Axiomatic theory of spectrum III: semiregularities
JO  - Studia Mathematica
PY  - 2000
SP  - 159
EP  - 169
VL  - 142
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-142-2-159-169/
DO  - 10.4064/sm-142-2-159-169
LA  - en
ID  - 10_4064_sm_142_2_159_169
ER  - 
%0 Journal Article
%A Vladimír Müller
%T Axiomatic theory of spectrum III: semiregularities
%J Studia Mathematica
%D 2000
%P 159-169
%V 142
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-142-2-159-169/
%R 10.4064/sm-142-2-159-169
%G en
%F 10_4064_sm_142_2_159_169
Vladimír Müller. Axiomatic theory of spectrum III: semiregularities. Studia Mathematica, Tome 142 (2000) no. 2, pp. 159-169. doi: 10.4064/sm-142-2-159-169

Cité par Sources :