Axiomatic theory of spectrum III: semiregularities
Studia Mathematica, Tome 142 (2000) no. 2, pp. 159-169
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We introduce and study the notions of upper and lower semiregularities in Banach algebras. These notions generalize the previously studied notion of regularity - a class is a regularity if and only if it is both upper and lower semiregularity. Each semiregularity defines in a natural way a spectrum which satisfies a one-way spectral mapping property (the spectrum defined by a regularity satisfies the both-ways spectral mapping property).
@article{10_4064_sm_142_2_159_169,
author = {Vladim{\'\i}r M\"uller},
title = {Axiomatic theory of spectrum {III:} semiregularities},
journal = {Studia Mathematica},
pages = {159--169},
publisher = {mathdoc},
volume = {142},
number = {2},
year = {2000},
doi = {10.4064/sm-142-2-159-169},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-142-2-159-169/}
}
TY - JOUR AU - Vladimír Müller TI - Axiomatic theory of spectrum III: semiregularities JO - Studia Mathematica PY - 2000 SP - 159 EP - 169 VL - 142 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-142-2-159-169/ DO - 10.4064/sm-142-2-159-169 LA - en ID - 10_4064_sm_142_2_159_169 ER -
Vladimír Müller. Axiomatic theory of spectrum III: semiregularities. Studia Mathematica, Tome 142 (2000) no. 2, pp. 159-169. doi: 10.4064/sm-142-2-159-169
Cité par Sources :