Smooth operators for the regular representation on homogeneous spaces
Studia Mathematica, Tome 142 (2000) no. 2, pp. 149-157

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A necessary and sufficient condition for a bounded operator on $L^2(M)$, M a Riemannian compact homogeneous space, to be smooth under conjugation by the regular representation is given. It is shown that, if all formal 'Fourier multipliers with variable coefficients' are bounded, then they are also smooth. In particular, they are smooth if M is a rank-one symmetric space.
DOI : 10.4064/sm-142-2-149-157

Severino Melo 1

1
@article{10_4064_sm_142_2_149_157,
     author = {Severino Melo},
     title = {Smooth operators for the regular representation on homogeneous spaces},
     journal = {Studia Mathematica},
     pages = {149--157},
     publisher = {mathdoc},
     volume = {142},
     number = {2},
     year = {2000},
     doi = {10.4064/sm-142-2-149-157},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-142-2-149-157/}
}
TY  - JOUR
AU  - Severino Melo
TI  - Smooth operators for the regular representation on homogeneous spaces
JO  - Studia Mathematica
PY  - 2000
SP  - 149
EP  - 157
VL  - 142
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-142-2-149-157/
DO  - 10.4064/sm-142-2-149-157
LA  - en
ID  - 10_4064_sm_142_2_149_157
ER  - 
%0 Journal Article
%A Severino Melo
%T Smooth operators for the regular representation on homogeneous spaces
%J Studia Mathematica
%D 2000
%P 149-157
%V 142
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-142-2-149-157/
%R 10.4064/sm-142-2-149-157
%G en
%F 10_4064_sm_142_2_149_157
Severino Melo. Smooth operators for the regular representation on homogeneous spaces. Studia Mathematica, Tome 142 (2000) no. 2, pp. 149-157. doi: 10.4064/sm-142-2-149-157

Cité par Sources :