Smooth operators for the regular representation on homogeneous spaces
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 142 (2000) no. 2, pp. 149-157
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              A necessary and sufficient condition for a bounded operator on $L^2(M)$, M a Riemannian compact homogeneous space, to be smooth under conjugation by the regular representation is given. It is shown that, if all formal 'Fourier multipliers with variable coefficients' are bounded, then they are also smooth. In particular, they are smooth if M is a rank-one symmetric space.
            
            
            
          
        
      @article{10_4064_sm_142_2_149_157,
     author = {Severino Melo},
     title = {Smooth operators for the regular representation on homogeneous spaces},
     journal = {Studia Mathematica},
     pages = {149--157},
     publisher = {mathdoc},
     volume = {142},
     number = {2},
     year = {2000},
     doi = {10.4064/sm-142-2-149-157},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-142-2-149-157/}
}
                      
                      
                    TY - JOUR AU - Severino Melo TI - Smooth operators for the regular representation on homogeneous spaces JO - Studia Mathematica PY - 2000 SP - 149 EP - 157 VL - 142 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-142-2-149-157/ DO - 10.4064/sm-142-2-149-157 LA - en ID - 10_4064_sm_142_2_149_157 ER -
Severino Melo. Smooth operators for the regular representation on homogeneous spaces. Studia Mathematica, Tome 142 (2000) no. 2, pp. 149-157. doi: 10.4064/sm-142-2-149-157
Cité par Sources :
