Representations of the spaces $C^∞(ℝ^N) ∩ H^{k,p}(ℝ^N)$
Studia Mathematica, Tome 142 (2000) no. 2, pp. 135-148

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give a representation of the spaces $C^∞(ℝ^N) ∩ H^{k,p}(ℝ^N)$ as spaces of vector-valued sequences and use it to investigate their topological properties and isomorphic classification. In particular, it is proved that $C^∞(ℝ^N) ∩ H^{k,2}(ℝ^N)$ is isomorphic to the sequence space $s^{ℕ} ∩ l^2(l^2)$, thereby showing that the isomorphy class does not depend on the dimension N if p=2.
DOI : 10.4064/sm-142-2-135-148

A. Albanese 1 ; V. Moscatelli 1

1
@article{10_4064_sm_142_2_135_148,
     author = {A. Albanese and V. Moscatelli},
     title = {Representations of the spaces $C^\ensuremath{\infty}(\ensuremath{\mathbb{R}}^N) \ensuremath{\cap} H^{k,p}(\ensuremath{\mathbb{R}}^N)$},
     journal = {Studia Mathematica},
     pages = {135--148},
     publisher = {mathdoc},
     volume = {142},
     number = {2},
     year = {2000},
     doi = {10.4064/sm-142-2-135-148},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-142-2-135-148/}
}
TY  - JOUR
AU  - A. Albanese
AU  - V. Moscatelli
TI  - Representations of the spaces $C^∞(ℝ^N) ∩ H^{k,p}(ℝ^N)$
JO  - Studia Mathematica
PY  - 2000
SP  - 135
EP  - 148
VL  - 142
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-142-2-135-148/
DO  - 10.4064/sm-142-2-135-148
LA  - en
ID  - 10_4064_sm_142_2_135_148
ER  - 
%0 Journal Article
%A A. Albanese
%A V. Moscatelli
%T Representations of the spaces $C^∞(ℝ^N) ∩ H^{k,p}(ℝ^N)$
%J Studia Mathematica
%D 2000
%P 135-148
%V 142
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-142-2-135-148/
%R 10.4064/sm-142-2-135-148
%G en
%F 10_4064_sm_142_2_135_148
A. Albanese; V. Moscatelli. Representations of the spaces $C^∞(ℝ^N) ∩ H^{k,p}(ℝ^N)$. Studia Mathematica, Tome 142 (2000) no. 2, pp. 135-148. doi: 10.4064/sm-142-2-135-148

Cité par Sources :