Representations of the spaces $C^∞(ℝ^N) ∩ H^{k,p}(ℝ^N)$
Studia Mathematica, Tome 142 (2000) no. 2, pp. 135-148
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We give a representation of the spaces $C^∞(ℝ^N) ∩ H^{k,p}(ℝ^N)$ as spaces of vector-valued sequences and use it to investigate their topological properties and isomorphic classification. In particular, it is proved that $C^∞(ℝ^N) ∩ H^{k,2}(ℝ^N)$ is isomorphic to the sequence space $s^{ℕ} ∩ l^2(l^2)$, thereby showing that the isomorphy class does not depend on the dimension N if p=2.
@article{10_4064_sm_142_2_135_148,
author = {A. Albanese and V. Moscatelli},
title = {Representations of the spaces $C^\ensuremath{\infty}(\ensuremath{\mathbb{R}}^N) \ensuremath{\cap} H^{k,p}(\ensuremath{\mathbb{R}}^N)$},
journal = {Studia Mathematica},
pages = {135--148},
year = {2000},
volume = {142},
number = {2},
doi = {10.4064/sm-142-2-135-148},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-142-2-135-148/}
}
TY - JOUR
AU - A. Albanese
AU - V. Moscatelli
TI - Representations of the spaces $C^∞(ℝ^N) ∩ H^{k,p}(ℝ^N)$
JO - Studia Mathematica
PY - 2000
SP - 135
EP - 148
VL - 142
IS - 2
UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-142-2-135-148/
DO - 10.4064/sm-142-2-135-148
LA - en
ID - 10_4064_sm_142_2_135_148
ER -
A. Albanese; V. Moscatelli. Representations of the spaces $C^∞(ℝ^N) ∩ H^{k,p}(ℝ^N)$. Studia Mathematica, Tome 142 (2000) no. 2, pp. 135-148. doi: 10.4064/sm-142-2-135-148
Cité par Sources :