Long-time asymptotics for the nonlinear heat equation with a fractional Laplacian in a ball
Studia Mathematica, Tome 142 (2000) no. 1, pp. 71-99
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The nonlinear heat equation with a fractional Laplacian $[u_t+(-Δ)^{α/2} u = u^2, 0 α ≤ 2]$, is considered in a unit ball $B$. Homogeneous boundary conditions and small initial conditions are examined. For 3/2 + ε₁ ≤ α ≤ 2, where ε₁ > 0 is small, the global-in-time mild solution from the space $C⁰([0,∞), H₀^{κ}(B))$ with κ α - 1/2 is constructed in the form of an eigenfunction expansion series. The uniqueness is proved for 0 κ α - 1/2, and the higher-order long-time asymptotics is calculated.
Keywords:
first initial-boundary value problem, nonlinear heat equation, construction of solutions, higher-order long-time asymptotics, fractional Laplacian
@article{10_4064_sm_142_1_71_99,
author = {Vladimir Varlamov},
title = {Long-time asymptotics for the nonlinear heat equation with a fractional {Laplacian} in a ball},
journal = {Studia Mathematica},
pages = {71--99},
year = {2000},
volume = {142},
number = {1},
doi = {10.4064/sm-142-1-71-99},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-142-1-71-99/}
}
TY - JOUR AU - Vladimir Varlamov TI - Long-time asymptotics for the nonlinear heat equation with a fractional Laplacian in a ball JO - Studia Mathematica PY - 2000 SP - 71 EP - 99 VL - 142 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-142-1-71-99/ DO - 10.4064/sm-142-1-71-99 LA - en ID - 10_4064_sm_142_1_71_99 ER -
%0 Journal Article %A Vladimir Varlamov %T Long-time asymptotics for the nonlinear heat equation with a fractional Laplacian in a ball %J Studia Mathematica %D 2000 %P 71-99 %V 142 %N 1 %U http://geodesic.mathdoc.fr/articles/10.4064/sm-142-1-71-99/ %R 10.4064/sm-142-1-71-99 %G en %F 10_4064_sm_142_1_71_99
Vladimir Varlamov. Long-time asymptotics for the nonlinear heat equation with a fractional Laplacian in a ball. Studia Mathematica, Tome 142 (2000) no. 1, pp. 71-99. doi: 10.4064/sm-142-1-71-99
Cité par Sources :