Centralizers for subsets of normed algebras
Studia Mathematica, Tome 142 (2000) no. 1, pp. 1-6
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let G be the set of invertible elements of a normed algebra A with an identity. For some but not all subsets H of G we have the following dichotomy. For x ∈ A either $cxc^{-1} = x$ for all c ∈ H or $sup {∥cxc^{-1}∥ : c ∈ H} = ∞ $. In that case the set of x ∈ A for which the sup is finite is the centralizer of H.
@article{10_4064_sm_142_1_1_6,
author = {Bertram Yood},
title = {Centralizers for subsets of normed algebras},
journal = {Studia Mathematica},
pages = {1--6},
publisher = {mathdoc},
volume = {142},
number = {1},
year = {2000},
doi = {10.4064/sm-142-1-1-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-142-1-1-6/}
}
Bertram Yood. Centralizers for subsets of normed algebras. Studia Mathematica, Tome 142 (2000) no. 1, pp. 1-6. doi: 10.4064/sm-142-1-1-6
Cité par Sources :