Centralizers for subsets of normed algebras
Studia Mathematica, Tome 142 (2000) no. 1, pp. 1-6

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let G be the set of invertible elements of a normed algebra A with an identity. For some but not all subsets H of G we have the following dichotomy. For x ∈ A either $cxc^{-1} = x$ for all c ∈ H or $sup {∥cxc^{-1}∥ : c ∈ H} = ∞ $. In that case the set of x ∈ A for which the sup is finite is the centralizer of H.
DOI : 10.4064/sm-142-1-1-6

Bertram Yood 1

1
@article{10_4064_sm_142_1_1_6,
     author = {Bertram Yood},
     title = {Centralizers for subsets of normed algebras},
     journal = {Studia Mathematica},
     pages = {1--6},
     publisher = {mathdoc},
     volume = {142},
     number = {1},
     year = {2000},
     doi = {10.4064/sm-142-1-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-142-1-1-6/}
}
TY  - JOUR
AU  - Bertram Yood
TI  - Centralizers for subsets of normed algebras
JO  - Studia Mathematica
PY  - 2000
SP  - 1
EP  - 6
VL  - 142
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-142-1-1-6/
DO  - 10.4064/sm-142-1-1-6
LA  - en
ID  - 10_4064_sm_142_1_1_6
ER  - 
%0 Journal Article
%A Bertram Yood
%T Centralizers for subsets of normed algebras
%J Studia Mathematica
%D 2000
%P 1-6
%V 142
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-142-1-1-6/
%R 10.4064/sm-142-1-1-6
%G en
%F 10_4064_sm_142_1_1_6
Bertram Yood. Centralizers for subsets of normed algebras. Studia Mathematica, Tome 142 (2000) no. 1, pp. 1-6. doi: 10.4064/sm-142-1-1-6

Cité par Sources :