On the complemented subspaces of the Schreier spaces
Studia Mathematica, Tome 141 (2000) no. 3, pp. 273-300
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
It is shown that for every 1 ≤ ξ ω, two subspaces of the Schreier space $X^ξ$ generated by subsequences $(e_{l_n}^{ξ})$ and $(e_{m_n}^{ξ})$, respectively, of the natural Schauder basis $(e_{n}^{ξ})$ of $X^ξ$ are isomorphic if and only if $(e_{l_n}^{ξ})$ and $(e_{m_n}^{ξ})$ are equivalent. Further, $X^ξ$ admits a continuum of mutually incomparable complemented subspaces spanned by subsequences of $(e_{n}^{ξ})$. It is also shown that there exists a complemented subspace spanned by a block basis of $(e_{n}^{ξ})$, which is not isomorphic to a subspace generated by a subsequence of $(e_n^ζ)$, for every $0 ≤ ζ ≤ ξ$. Finally, an example is given of an uncomplemented subspace of $X^ξ$ which is spanned by a block basis of $(e_{n}^{ξ})$.
Keywords:
Schreier sets, complemented subspace
Affiliations des auteurs :
I. Gasparis 1 ; D. Leung 1
@article{10_4064_sm_141_3_273_300,
author = {I. Gasparis and D. Leung},
title = {On the complemented subspaces of the {Schreier} spaces},
journal = {Studia Mathematica},
pages = {273--300},
publisher = {mathdoc},
volume = {141},
number = {3},
year = {2000},
doi = {10.4064/sm-141-3-273-300},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-141-3-273-300/}
}
TY - JOUR AU - I. Gasparis AU - D. Leung TI - On the complemented subspaces of the Schreier spaces JO - Studia Mathematica PY - 2000 SP - 273 EP - 300 VL - 141 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-141-3-273-300/ DO - 10.4064/sm-141-3-273-300 LA - en ID - 10_4064_sm_141_3_273_300 ER -
I. Gasparis; D. Leung. On the complemented subspaces of the Schreier spaces. Studia Mathematica, Tome 141 (2000) no. 3, pp. 273-300. doi: 10.4064/sm-141-3-273-300
Cité par Sources :