On cyclic α(·)-monotone multifunctions
Studia Mathematica, Tome 141 (2000) no. 3, pp. 263-272
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let (X,d) be a metric space. Let Φ be a linear family of real-valued functions defined on X. Let $Γ: X → 2^{Φ}$ be a maximal cyclic α(·)-monotone multifunction with non-empty values. We give a sufficient condition on α(·) and Φ for the following generalization of the Rockafellar theorem to hold. There is a function f on X, weakly Φ-convex with modulus α(·), such that Γ is the weak Φ-subdifferential of f with modulus α(·), $Γ(x)=∂^{-α}_{Φ}f|_{x}$.
Keywords:
Fréchet Φ-differentiability, cyclic α(·)-monotone multi- function
Affiliations des auteurs :
S. Rolewicz 1
@article{10_4064_sm_141_3_263_272,
author = {S. Rolewicz},
title = {On cyclic \ensuremath{\alpha}({\textperiodcentered})-monotone multifunctions},
journal = {Studia Mathematica},
pages = {263--272},
publisher = {mathdoc},
volume = {141},
number = {3},
year = {2000},
doi = {10.4064/sm-141-3-263-272},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-141-3-263-272/}
}
S. Rolewicz. On cyclic α(·)-monotone multifunctions. Studia Mathematica, Tome 141 (2000) no. 3, pp. 263-272. doi: 10.4064/sm-141-3-263-272
Cité par Sources :