On Bárány's theorems of Carathéodory and Helly type
Studia Mathematica, Tome 141 (2000) no. 3, pp. 235-250
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
The paper begins with a self-contained and short development of Bárány's theorems of Carathéodory and Helly type in finite-dimensional spaces together with some new variants. In the second half the possible generalizations of these results to arbitrary Banach spaces are investigated. The Carathéodory-Bárány theorem has a counterpart in arbitrary dimensions under suitable uniform compactness or uniform boundedness conditions. The proper generalization of the Helly-Bárány theorem reads as follows: if $C_{n}$, n=1,2,..., are families of closed convex sets in a bounded subset of a separable Banach space X such that there exists a positive $ε_{0}$ with $⋂_{C ∈ C_{n}} (C)_{ε} = ∅$ for $ε ε_{0}$, then there are $C_{n} ∈ C_{n}$ with $⋂_{n} (C_{n})_{ε} = ∅$ for all $ε ε_{0}$; here $(C)_{ε}$ denotes the collection of all x with distance at most ε to C.
Keywords:
Krein-Milman theorem, Helly, Helly-type theorem, Bárány, Carathéodory, RNP
Affiliations des auteurs :
Ehrhard Behrends 1
@article{10_4064_sm_141_3_235_250,
author = {Ehrhard Behrends},
title = {On {B\'ar\'any's} theorems of {Carath\'eodory} and {Helly} type},
journal = {Studia Mathematica},
pages = {235--250},
publisher = {mathdoc},
volume = {141},
number = {3},
year = {2000},
doi = {10.4064/sm-141-3-235-250},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-141-3-235-250/}
}
TY - JOUR AU - Ehrhard Behrends TI - On Bárány's theorems of Carathéodory and Helly type JO - Studia Mathematica PY - 2000 SP - 235 EP - 250 VL - 141 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-141-3-235-250/ DO - 10.4064/sm-141-3-235-250 LA - en ID - 10_4064_sm_141_3_235_250 ER -
Ehrhard Behrends. On Bárány's theorems of Carathéodory and Helly type. Studia Mathematica, Tome 141 (2000) no. 3, pp. 235-250. doi: 10.4064/sm-141-3-235-250
Cité par Sources :