Characterization of compact subsets of algebraic varieties in terms of Bernstein type inequalities
Studia Mathematica, Tome 141 (2000) no. 3, pp. 221-234
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We show that in the class of compact sets K in $ℝ^n$ with an analytic parametrization of order m, the sets with Zariski dimension m are exactly those which admit a Bernstein (or a van der Corput-Schaake) type inequality for tangential derivatives of (the traces of) polynomials on K.
Keywords:
pluricomplex Green function, Siciak extremal function, traces of polynomials on semialgebraic sets, Zariski dimension, Bernstein and van der Corput-Schaake type inequalities
@article{10_4064_sm_141_3_221_234,
author = {M. Baran and W. Ple\'sniak},
title = {Characterization of compact subsets of algebraic varieties in terms of {Bernstein} type inequalities},
journal = {Studia Mathematica},
pages = {221--234},
year = {2000},
volume = {141},
number = {3},
doi = {10.4064/sm-141-3-221-234},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-141-3-221-234/}
}
TY - JOUR AU - M. Baran AU - W. Pleśniak TI - Characterization of compact subsets of algebraic varieties in terms of Bernstein type inequalities JO - Studia Mathematica PY - 2000 SP - 221 EP - 234 VL - 141 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-141-3-221-234/ DO - 10.4064/sm-141-3-221-234 LA - en ID - 10_4064_sm_141_3_221_234 ER -
%0 Journal Article %A M. Baran %A W. Pleśniak %T Characterization of compact subsets of algebraic varieties in terms of Bernstein type inequalities %J Studia Mathematica %D 2000 %P 221-234 %V 141 %N 3 %U http://geodesic.mathdoc.fr/articles/10.4064/sm-141-3-221-234/ %R 10.4064/sm-141-3-221-234 %G en %F 10_4064_sm_141_3_221_234
M. Baran; W. Pleśniak. Characterization of compact subsets of algebraic varieties in terms of Bernstein type inequalities. Studia Mathematica, Tome 141 (2000) no. 3, pp. 221-234. doi: 10.4064/sm-141-3-221-234
Cité par Sources :