Operators with an ergodic power
Studia Mathematica, Tome 141 (2000) no. 3, pp. 201-208

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove that if some power of an operator is ergodic, then the operator itself is ergodic. The converse is not true.
DOI : 10.4064/sm-141-3-201-208

Teresa Bermúdez 1 ; Manuel González 1 ; Mostafa Mbekhta 1

1
@article{10_4064_sm_141_3_201_208,
     author = {Teresa Berm\'udez and Manuel Gonz\'alez and Mostafa Mbekhta},
     title = {Operators with an ergodic power},
     journal = {Studia Mathematica},
     pages = {201--208},
     publisher = {mathdoc},
     volume = {141},
     number = {3},
     year = {2000},
     doi = {10.4064/sm-141-3-201-208},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-141-3-201-208/}
}
TY  - JOUR
AU  - Teresa Bermúdez
AU  - Manuel González
AU  - Mostafa Mbekhta
TI  - Operators with an ergodic power
JO  - Studia Mathematica
PY  - 2000
SP  - 201
EP  - 208
VL  - 141
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-141-3-201-208/
DO  - 10.4064/sm-141-3-201-208
LA  - en
ID  - 10_4064_sm_141_3_201_208
ER  - 
%0 Journal Article
%A Teresa Bermúdez
%A Manuel González
%A Mostafa Mbekhta
%T Operators with an ergodic power
%J Studia Mathematica
%D 2000
%P 201-208
%V 141
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-141-3-201-208/
%R 10.4064/sm-141-3-201-208
%G en
%F 10_4064_sm_141_3_201_208
Teresa Bermúdez; Manuel González; Mostafa Mbekhta. Operators with an ergodic power. Studia Mathematica, Tome 141 (2000) no. 3, pp. 201-208. doi: 10.4064/sm-141-3-201-208

Cité par Sources :