Operators with an ergodic power
Studia Mathematica, Tome 141 (2000) no. 3, pp. 201-208
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We prove that if some power of an operator is ergodic, then the operator itself is ergodic. The converse is not true.
@article{10_4064_sm_141_3_201_208,
author = {Teresa Berm\'udez and Manuel Gonz\'alez and Mostafa Mbekhta},
title = {Operators with an ergodic power},
journal = {Studia Mathematica},
pages = {201--208},
year = {2000},
volume = {141},
number = {3},
doi = {10.4064/sm-141-3-201-208},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-141-3-201-208/}
}
TY - JOUR AU - Teresa Bermúdez AU - Manuel González AU - Mostafa Mbekhta TI - Operators with an ergodic power JO - Studia Mathematica PY - 2000 SP - 201 EP - 208 VL - 141 IS - 3 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-141-3-201-208/ DO - 10.4064/sm-141-3-201-208 LA - en ID - 10_4064_sm_141_3_201_208 ER -
Teresa Bermúdez; Manuel González; Mostafa Mbekhta. Operators with an ergodic power. Studia Mathematica, Tome 141 (2000) no. 3, pp. 201-208. doi: 10.4064/sm-141-3-201-208
Cité par Sources :