Dirichlet series and uniform ergodic theorems for linear operators in Banach spaces
Studia Mathematica, Tome 141 (2000) no. 1, pp. 69-83

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the convergence properties of Dirichlet series for a bounded linear operator T in a Banach space X. For an increasing sequence $μ = {μ_n}$ of positive numbers and a sequence $f = {f_n}$ of functions analytic in neighborhoods of the spectrum σ(T), the Dirichlet series for ${f_n(T)}$ is defined by D[f,μ;z](T) = ∑_{n=0}^{∞} e^{-μ_nz} f_n(T), z∈ ℂ. Moreover, we introduce a family of summation methods called Dirichlet methods and study the ergodic properties of Dirichlet averages for T in the uniform operator topology.
DOI : 10.4064/sm-141-1-69-83

Takeshi Yoshimoto 1

1
@article{10_4064_sm_141_1_69_83,
     author = {Takeshi Yoshimoto},
     title = {Dirichlet series and uniform ergodic theorems for linear operators in {Banach} spaces},
     journal = {Studia Mathematica},
     pages = {69--83},
     publisher = {mathdoc},
     volume = {141},
     number = {1},
     year = {2000},
     doi = {10.4064/sm-141-1-69-83},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-141-1-69-83/}
}
TY  - JOUR
AU  - Takeshi Yoshimoto
TI  - Dirichlet series and uniform ergodic theorems for linear operators in Banach spaces
JO  - Studia Mathematica
PY  - 2000
SP  - 69
EP  - 83
VL  - 141
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-141-1-69-83/
DO  - 10.4064/sm-141-1-69-83
LA  - en
ID  - 10_4064_sm_141_1_69_83
ER  - 
%0 Journal Article
%A Takeshi Yoshimoto
%T Dirichlet series and uniform ergodic theorems for linear operators in Banach spaces
%J Studia Mathematica
%D 2000
%P 69-83
%V 141
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-141-1-69-83/
%R 10.4064/sm-141-1-69-83
%G en
%F 10_4064_sm_141_1_69_83
Takeshi Yoshimoto. Dirichlet series and uniform ergodic theorems for linear operators in Banach spaces. Studia Mathematica, Tome 141 (2000) no. 1, pp. 69-83. doi: 10.4064/sm-141-1-69-83

Cité par Sources :