Non-regularity for Banach function algebras
Studia Mathematica, Tome 141 (2000) no. 1, pp. 53-68

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let A be a unital Banach function algebra with character space $Φ_{A}$. For $x ∈ Φ_{A}$, let $M_{x}$ and $J_{x}$ be the ideals of functions vanishing at x and in a neighbourhood of x, respectively. It is shown that the hull of $J_{x}$ is connected, and that if x does not belong to the Shilov boundary of A then the set ${y ∈ Φ_{A}: M_{x} ⊇ J_{y}}$ has an infinite connected subset. Various related results are given.
DOI : 10.4064/sm-141-1-53-68

J. Feinstein 1 ; D. Somerset 1

1
@article{10_4064_sm_141_1_53_68,
     author = {J. Feinstein and D. Somerset},
     title = {Non-regularity for {Banach} function algebras},
     journal = {Studia Mathematica},
     pages = {53--68},
     publisher = {mathdoc},
     volume = {141},
     number = {1},
     year = {2000},
     doi = {10.4064/sm-141-1-53-68},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-141-1-53-68/}
}
TY  - JOUR
AU  - J. Feinstein
AU  - D. Somerset
TI  - Non-regularity for Banach function algebras
JO  - Studia Mathematica
PY  - 2000
SP  - 53
EP  - 68
VL  - 141
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-141-1-53-68/
DO  - 10.4064/sm-141-1-53-68
LA  - en
ID  - 10_4064_sm_141_1_53_68
ER  - 
%0 Journal Article
%A J. Feinstein
%A D. Somerset
%T Non-regularity for Banach function algebras
%J Studia Mathematica
%D 2000
%P 53-68
%V 141
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-141-1-53-68/
%R 10.4064/sm-141-1-53-68
%G en
%F 10_4064_sm_141_1_53_68
J. Feinstein; D. Somerset. Non-regularity for Banach function algebras. Studia Mathematica, Tome 141 (2000) no. 1, pp. 53-68. doi: 10.4064/sm-141-1-53-68

Cité par Sources :