A class of Fourier multipliers on H¹(ℝ²)
Studia Mathematica, Tome 140 (2000) no. 3, pp. 289-298

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

An integral criterion for being an $H^1(ℝ^2)$ Fourier multiplier is proved. It is applied in particular to suitable regular functions which depend on the product of variables.
DOI : 10.4064/sm-140-3-289-298

Michał Wojciechowski 1

1
@article{10_4064_sm_140_3_289_298,
     author = {Micha{\l} Wojciechowski},
     title = {A class of {Fourier} multipliers on {H{\textonesuperior}(\ensuremath{\mathbb{R}}{\texttwosuperior})}},
     journal = {Studia Mathematica},
     pages = {289--298},
     publisher = {mathdoc},
     volume = {140},
     number = {3},
     year = {2000},
     doi = {10.4064/sm-140-3-289-298},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-140-3-289-298/}
}
TY  - JOUR
AU  - Michał Wojciechowski
TI  - A class of Fourier multipliers on H¹(ℝ²)
JO  - Studia Mathematica
PY  - 2000
SP  - 289
EP  - 298
VL  - 140
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-140-3-289-298/
DO  - 10.4064/sm-140-3-289-298
LA  - fr
ID  - 10_4064_sm_140_3_289_298
ER  - 
%0 Journal Article
%A Michał Wojciechowski
%T A class of Fourier multipliers on H¹(ℝ²)
%J Studia Mathematica
%D 2000
%P 289-298
%V 140
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-140-3-289-298/
%R 10.4064/sm-140-3-289-298
%G fr
%F 10_4064_sm_140_3_289_298
Michał Wojciechowski. A class of Fourier multipliers on H¹(ℝ²). Studia Mathematica, Tome 140 (2000) no. 3, pp. 289-298. doi: 10.4064/sm-140-3-289-298

Cité par Sources :