A Marcinkiewicz type multiplier theorem for H¹ spaces on product domains
Studia Mathematica, Tome 140 (2000) no. 3, pp. 273-287

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

It is proved that if $m : ℝ^d → ℂ$ satisfies a suitable integral condition of Marcinkiewicz type then m is a Fourier multiplier on the $H^1$ space on the product domain $ℝ^{d_1}×...×ℝ^{d_k}$. This implies an estimate of the norm $N(m,L^p(ℝ^d)$ of the multiplier transformation of m on $L^p(ℝ^d)$ as p→1. Precisely we get $N(m,L^p(ℝ^d))≲(p-1)^{-k}$. This bound is the best possible in general.
DOI : 10.4064/sm-140-3-273-287

Michał Wojciechowski 1

1
@article{10_4064_sm_140_3_273_287,
     author = {Micha{\l} Wojciechowski},
     title = {A {Marcinkiewicz} type multiplier theorem for {H{\textonesuperior}} spaces on product domains},
     journal = {Studia Mathematica},
     pages = {273--287},
     publisher = {mathdoc},
     volume = {140},
     number = {3},
     year = {2000},
     doi = {10.4064/sm-140-3-273-287},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-140-3-273-287/}
}
TY  - JOUR
AU  - Michał Wojciechowski
TI  - A Marcinkiewicz type multiplier theorem for H¹ spaces on product domains
JO  - Studia Mathematica
PY  - 2000
SP  - 273
EP  - 287
VL  - 140
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-140-3-273-287/
DO  - 10.4064/sm-140-3-273-287
LA  - fr
ID  - 10_4064_sm_140_3_273_287
ER  - 
%0 Journal Article
%A Michał Wojciechowski
%T A Marcinkiewicz type multiplier theorem for H¹ spaces on product domains
%J Studia Mathematica
%D 2000
%P 273-287
%V 140
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-140-3-273-287/
%R 10.4064/sm-140-3-273-287
%G fr
%F 10_4064_sm_140_3_273_287
Michał Wojciechowski. A Marcinkiewicz type multiplier theorem for H¹ spaces on product domains. Studia Mathematica, Tome 140 (2000) no. 3, pp. 273-287. doi: 10.4064/sm-140-3-273-287

Cité par Sources :