Geometry of Banach spaces and biorthogonal systems
Studia Mathematica, Tome 140 (2000) no. 3, pp. 243-271

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A separable Banach space X contains $ℓ_1$ isomorphically if and only if X has a bounded fundamental total $wc_{0}*$-stable biorthogonal system. The dual of a separable Banach space X fails the Schur property if and only if X has a bounded fundamental total $wc_{0}*$-biorthogonal system.
DOI : 10.4064/sm-140-3-243-271

S. J. Dilworth 1 ;  1 ;  1

1
@article{10_4064_sm_140_3_243_271,
     author = {S. J. Dilworth and   and  },
     title = {Geometry of {Banach} spaces and biorthogonal systems},
     journal = {Studia Mathematica},
     pages = {243--271},
     publisher = {mathdoc},
     volume = {140},
     number = {3},
     year = {2000},
     doi = {10.4064/sm-140-3-243-271},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-140-3-243-271/}
}
TY  - JOUR
AU  - S. J. Dilworth
AU  -  
AU  -  
TI  - Geometry of Banach spaces and biorthogonal systems
JO  - Studia Mathematica
PY  - 2000
SP  - 243
EP  - 271
VL  - 140
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-140-3-243-271/
DO  - 10.4064/sm-140-3-243-271
LA  - en
ID  - 10_4064_sm_140_3_243_271
ER  - 
%0 Journal Article
%A S. J. Dilworth
%A  
%A  
%T Geometry of Banach spaces and biorthogonal systems
%J Studia Mathematica
%D 2000
%P 243-271
%V 140
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-140-3-243-271/
%R 10.4064/sm-140-3-243-271
%G en
%F 10_4064_sm_140_3_243_271
S. J. Dilworth;  ;  . Geometry of Banach spaces and biorthogonal systems. Studia Mathematica, Tome 140 (2000) no. 3, pp. 243-271. doi: 10.4064/sm-140-3-243-271

Cité par Sources :