Geometry of Banach spaces and biorthogonal systems
Studia Mathematica, Tome 140 (2000) no. 3, pp. 243-271
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A separable Banach space X contains $ℓ_1$ isomorphically if and only if X has a bounded fundamental total $wc_{0}*$-stable biorthogonal system. The dual of a separable Banach space X fails the Schur property if and only if X has a bounded fundamental total $wc_{0}*$-biorthogonal system.
Affiliations des auteurs :
S. J. Dilworth 1 ;  1 ;  1
@article{10_4064_sm_140_3_243_271,
author = {S. J. Dilworth and and },
title = {Geometry of {Banach} spaces and biorthogonal systems},
journal = {Studia Mathematica},
pages = {243--271},
publisher = {mathdoc},
volume = {140},
number = {3},
year = {2000},
doi = {10.4064/sm-140-3-243-271},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-140-3-243-271/}
}
TY - JOUR AU - S. J. Dilworth AU - AU - TI - Geometry of Banach spaces and biorthogonal systems JO - Studia Mathematica PY - 2000 SP - 243 EP - 271 VL - 140 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-140-3-243-271/ DO - 10.4064/sm-140-3-243-271 LA - en ID - 10_4064_sm_140_3_243_271 ER -
S. J. Dilworth; ; . Geometry of Banach spaces and biorthogonal systems. Studia Mathematica, Tome 140 (2000) no. 3, pp. 243-271. doi: 10.4064/sm-140-3-243-271
Cité par Sources :