Composition operators and the Hilbert matrix
Studia Mathematica, Tome 140 (2000) no. 2, pp. 191-198
The Hilbert matrix acts on Hardy spaces by multiplication with Taylor coefficients. We find an upper bound for the norm of the induced operator.
@article{10_4064_sm_140_2_191_198,
author = {E. Diamantopoulos and Aristomenis G. Siskakis},
title = {Composition operators and the {Hilbert} matrix},
journal = {Studia Mathematica},
pages = {191--198},
year = {2000},
volume = {140},
number = {2},
doi = {10.4064/sm-140-2-191-198},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-140-2-191-198/}
}
TY - JOUR AU - E. Diamantopoulos AU - Aristomenis G. Siskakis TI - Composition operators and the Hilbert matrix JO - Studia Mathematica PY - 2000 SP - 191 EP - 198 VL - 140 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-140-2-191-198/ DO - 10.4064/sm-140-2-191-198 LA - en ID - 10_4064_sm_140_2_191_198 ER -
E. Diamantopoulos; Aristomenis G. Siskakis. Composition operators and the Hilbert matrix. Studia Mathematica, Tome 140 (2000) no. 2, pp. 191-198. doi: 10.4064/sm-140-2-191-198
Cité par Sources :