Restriction of an operator to the range of its powers
Studia Mathematica, Tome 140 (2000) no. 2, pp. 163-175

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let T be a bounded linear operator acting on a Banach space X. For each integer n, define $T_n$ to be the restriction of T to $ R(T^n) $ viewed as a map from $R(T^n)$ into $R(T^n)$. In [1] and [2] we have characterized operators T such that for a given integer n, the operator $T_n$ is a Fredholm or a semi-Fredholm operator. We continue those investigations and we study the cases where $T_n$ belongs to a given regularity in the sense defined by Kordula and Müller in[10]. We also consider the regularity of operators with topological uniform descent.
DOI : 10.4064/sm-140-2-163-175

M. Berkani 1

1
@article{10_4064_sm_140_2_163_175,
     author = {M. Berkani},
     title = {Restriction of an operator to the range of its powers},
     journal = {Studia Mathematica},
     pages = {163--175},
     publisher = {mathdoc},
     volume = {140},
     number = {2},
     year = {2000},
     doi = {10.4064/sm-140-2-163-175},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-140-2-163-175/}
}
TY  - JOUR
AU  - M. Berkani
TI  - Restriction of an operator to the range of its powers
JO  - Studia Mathematica
PY  - 2000
SP  - 163
EP  - 175
VL  - 140
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-140-2-163-175/
DO  - 10.4064/sm-140-2-163-175
LA  - en
ID  - 10_4064_sm_140_2_163_175
ER  - 
%0 Journal Article
%A M. Berkani
%T Restriction of an operator to the range of its powers
%J Studia Mathematica
%D 2000
%P 163-175
%V 140
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-140-2-163-175/
%R 10.4064/sm-140-2-163-175
%G en
%F 10_4064_sm_140_2_163_175
M. Berkani. Restriction of an operator to the range of its powers. Studia Mathematica, Tome 140 (2000) no. 2, pp. 163-175. doi: 10.4064/sm-140-2-163-175

Cité par Sources :