Linear extension operators for restrictions of function spaces to irregular open sets
Studia Mathematica, Tome 140 (2000) no. 2, pp. 141-162

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let an open set $Ω ⊂ ℝ^n$ satisfy for some 0≤d≤n and ε > 0 the condition: the $d$-Hausdorff content $H_d(Ω∩B) ≥ ε|B|^{d/n}$ for any ball B centered in Ω of volume |B|≤1. Let $H_p^s$ denote the Bessel potential space on $ℝ^n$ 1 p ∞,s > 0, and let $H_p^s[Ω]$ be the linear space of restrictions of elements of $H_p^s$ to Ω endowed with the quotient space norm. We find sufficient conditions for the existence of a linear extension operator for $H_p^s[Ω]$, i.e., a bounded linear operator $H_p^s[Ω]→H_p^s$ such that $ext⨍|_Ω}=⨍$ for all ⨍. The main result is that such an operator exists if (i) d > n-1 and s > (n-d)/min(p,2), or (ii) d≤n-1 and s-[s] > (n-d)/min(p,2). It is an open problem whether these assumptions are sharp.
DOI : 10.4064/sm-140-2-141-162
Keywords: Sobolev spaces, Besov-Triebel-Lizorkin spaces, restrictions, extension operators, irregular domains, Hausdorff content, local polynomial approximation, complemented subspaces

V. S. Rychkov 1

1
@article{10_4064_sm_140_2_141_162,
     author = {V. S. Rychkov},
     title = {Linear extension operators for restrictions of function spaces to irregular open sets},
     journal = {Studia Mathematica},
     pages = {141--162},
     publisher = {mathdoc},
     volume = {140},
     number = {2},
     year = {2000},
     doi = {10.4064/sm-140-2-141-162},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-140-2-141-162/}
}
TY  - JOUR
AU  - V. S. Rychkov
TI  - Linear extension operators for restrictions of function spaces to irregular open sets
JO  - Studia Mathematica
PY  - 2000
SP  - 141
EP  - 162
VL  - 140
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-140-2-141-162/
DO  - 10.4064/sm-140-2-141-162
LA  - en
ID  - 10_4064_sm_140_2_141_162
ER  - 
%0 Journal Article
%A V. S. Rychkov
%T Linear extension operators for restrictions of function spaces to irregular open sets
%J Studia Mathematica
%D 2000
%P 141-162
%V 140
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-140-2-141-162/
%R 10.4064/sm-140-2-141-162
%G en
%F 10_4064_sm_140_2_141_162
V. S. Rychkov. Linear extension operators for restrictions of function spaces to irregular open sets. Studia Mathematica, Tome 140 (2000) no. 2, pp. 141-162. doi: 10.4064/sm-140-2-141-162

Cité par Sources :