Linear extension operators for restrictions of function spaces to irregular open sets
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 140 (2000) no. 2, pp. 141-162
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              Let an open set $Ω ⊂ ℝ^n$ satisfy for some 0≤d≤n and ε > 0 the condition: the $d$-Hausdorff content $H_d(Ω∩B) ≥ ε|B|^{d/n}$ for any ball B centered in Ω of volume |B|≤1. Let $H_p^s$ denote the Bessel potential space on $ℝ^n$ 1  p  ∞,s > 0, and let $H_p^s[Ω]$ be the linear space of restrictions of elements of $H_p^s$ to Ω endowed with the quotient space norm. We find sufficient conditions for the existence of a linear extension operator for $H_p^s[Ω]$, i.e., a bounded linear operator $H_p^s[Ω]→H_p^s$ such that $ext⨍|_Ω}=⨍$ for all ⨍. The main result is that such an operator exists if (i) d > n-1 and s > (n-d)/min(p,2), or (ii) d≤n-1 and s-[s] > (n-d)/min(p,2). It is an open problem whether these assumptions are sharp.
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Sobolev spaces, Besov-Triebel-Lizorkin spaces, restrictions, extension operators, irregular domains, Hausdorff content, local polynomial approximation, complemented subspaces
                    
                    
                    
                  
                
                
                
                
                
                Affiliations des auteurs :
                
                
                  
                    
                
                
                
                
                
                
                
                
                
                
              V. S. Rychkov 1
@article{10_4064_sm_140_2_141_162,
     author = {V. S. Rychkov},
     title = {Linear extension operators for restrictions of function spaces to irregular open sets},
     journal = {Studia Mathematica},
     pages = {141--162},
     publisher = {mathdoc},
     volume = {140},
     number = {2},
     year = {2000},
     doi = {10.4064/sm-140-2-141-162},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-140-2-141-162/}
}
                      
                      
                    TY - JOUR AU - V. S. Rychkov TI - Linear extension operators for restrictions of function spaces to irregular open sets JO - Studia Mathematica PY - 2000 SP - 141 EP - 162 VL - 140 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-140-2-141-162/ DO - 10.4064/sm-140-2-141-162 LA - en ID - 10_4064_sm_140_2_141_162 ER -
%0 Journal Article %A V. S. Rychkov %T Linear extension operators for restrictions of function spaces to irregular open sets %J Studia Mathematica %D 2000 %P 141-162 %V 140 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-140-2-141-162/ %R 10.4064/sm-140-2-141-162 %G en %F 10_4064_sm_140_2_141_162
V. S. Rychkov. Linear extension operators for restrictions of function spaces to irregular open sets. Studia Mathematica, Tome 140 (2000) no. 2, pp. 141-162. doi: 10.4064/sm-140-2-141-162
Cité par Sources :
