Degenerate evolution problems and Beta-type operators
Studia Mathematica, Tome 140 (2000) no. 2, pp. 117-139
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
The present paper is concerned with the study of the differential operator Au(x):=α(x)u''(x)+β(x)u'(x) in the space C([0,1)] and of its adjoint Bv(x):=((αv)'(x)-β(x)v(x))' in the space $L^1(0,1)$, where α(x):=x(1-x)/2 (0≤x≤1). A careful analysis of their main properties is carried out in view of some generation results available in [6, 12, 20] and [25]. In addition, we introduce and study two different kinds of Beta-type operators as a generalization of similar operators defined in [18]. Among the corresponding approximation results, we show how they can be used in order to represent explicitly the solutions of the Cauchy problems associated with the operators A and Ã, where à is equal to B up to a suitable bounded additive perturbation.
Keywords:
approximation process, $C_0$-semigroups of contractions, Beta-type operators, differential operators
@article{10_4064_sm_140_2_117_139,
author = {Antonio Attalienti and Michele },
title = {Degenerate evolution problems and {Beta-type} operators},
journal = {Studia Mathematica},
pages = {117--139},
year = {2000},
volume = {140},
number = {2},
doi = {10.4064/sm-140-2-117-139},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-140-2-117-139/}
}
TY - JOUR AU - Antonio Attalienti AU - Michele TI - Degenerate evolution problems and Beta-type operators JO - Studia Mathematica PY - 2000 SP - 117 EP - 139 VL - 140 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-140-2-117-139/ DO - 10.4064/sm-140-2-117-139 LA - en ID - 10_4064_sm_140_2_117_139 ER -
Antonio Attalienti; Michele . Degenerate evolution problems and Beta-type operators. Studia Mathematica, Tome 140 (2000) no. 2, pp. 117-139. doi: 10.4064/sm-140-2-117-139
Cité par Sources :