Variational integrals for elliptic complexes
Studia Mathematica, Tome 140 (2000) no. 1, pp. 79-98
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We discuss variational integrals which are defined on differential forms associated with a given first order elliptic complex. This general framework provides us with better understanding of the concepts of convexity, even in the classical setting $D'(ℝ^n,ℝ) {∇\over →} D'(ℝ^n,ℝ^n) {{curl}\over{→}} D'(ℝ^n,ℝ^{n×n})$
Affiliations des auteurs :
Flavia Giannetti 1 ; Anna Verde 1
@article{10_4064_sm_140_1_79_98,
author = {Flavia Giannetti and Anna Verde},
title = {Variational integrals for elliptic complexes},
journal = {Studia Mathematica},
pages = {79--98},
publisher = {mathdoc},
volume = {140},
number = {1},
year = {2000},
doi = {10.4064/sm-140-1-79-98},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-140-1-79-98/}
}
TY - JOUR AU - Flavia Giannetti AU - Anna Verde TI - Variational integrals for elliptic complexes JO - Studia Mathematica PY - 2000 SP - 79 EP - 98 VL - 140 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-140-1-79-98/ DO - 10.4064/sm-140-1-79-98 LA - en ID - 10_4064_sm_140_1_79_98 ER -
Flavia Giannetti; Anna Verde. Variational integrals for elliptic complexes. Studia Mathematica, Tome 140 (2000) no. 1, pp. 79-98. doi: 10.4064/sm-140-1-79-98
Cité par Sources :