Variational integrals for elliptic complexes
Studia Mathematica, Tome 140 (2000) no. 1, pp. 79-98

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We discuss variational integrals which are defined on differential forms associated with a given first order elliptic complex. This general framework provides us with better understanding of the concepts of convexity, even in the classical setting $D'(ℝ^n,ℝ) {∇\over →} D'(ℝ^n,ℝ^n) {{curl}\over{→}} D'(ℝ^n,ℝ^{n×n})$
DOI : 10.4064/sm-140-1-79-98

Flavia Giannetti 1 ; Anna Verde 1

1
@article{10_4064_sm_140_1_79_98,
     author = {Flavia Giannetti and Anna Verde},
     title = {Variational integrals for elliptic complexes},
     journal = {Studia Mathematica},
     pages = {79--98},
     publisher = {mathdoc},
     volume = {140},
     number = {1},
     year = {2000},
     doi = {10.4064/sm-140-1-79-98},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-140-1-79-98/}
}
TY  - JOUR
AU  - Flavia Giannetti
AU  - Anna Verde
TI  - Variational integrals for elliptic complexes
JO  - Studia Mathematica
PY  - 2000
SP  - 79
EP  - 98
VL  - 140
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-140-1-79-98/
DO  - 10.4064/sm-140-1-79-98
LA  - en
ID  - 10_4064_sm_140_1_79_98
ER  - 
%0 Journal Article
%A Flavia Giannetti
%A Anna Verde
%T Variational integrals for elliptic complexes
%J Studia Mathematica
%D 2000
%P 79-98
%V 140
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-140-1-79-98/
%R 10.4064/sm-140-1-79-98
%G en
%F 10_4064_sm_140_1_79_98
Flavia Giannetti; Anna Verde. Variational integrals for elliptic complexes. Studia Mathematica, Tome 140 (2000) no. 1, pp. 79-98. doi: 10.4064/sm-140-1-79-98

Cité par Sources :