A splitting theory for the space of distributions
Studia Mathematica, Tome 140 (2000) no. 1, pp. 57-77

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The splitting problem is studied for short exact sequences consisting of countable projective limits of DFN-spaces (*) 0 → F → X → G → 0, where F or G are isomorphic to the space of distributions D'. It is proved that every sequence (*) splits for F ≃ D' iff G is a subspace of D' and that, for ultrabornological F, every sequence (*) splits for G ≃ D' iff F is a quotient of D'
DOI : 10.4064/sm-140-1-57-77
Keywords: exact complex, systems of partial differential equations, short exact sequence, splitting, space of distributions, lifting of Banach discs, Schwartz spaces, nuclear spaces, ultrabornological associated space, ω

P. Domański 1 ; D Vogt 1

1
@article{10_4064_sm_140_1_57_77,
     author = {P. Doma\'nski and D Vogt},
     title = {A splitting theory for the space of distributions},
     journal = {Studia Mathematica},
     pages = {57--77},
     publisher = {mathdoc},
     volume = {140},
     number = {1},
     year = {2000},
     doi = {10.4064/sm-140-1-57-77},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-140-1-57-77/}
}
TY  - JOUR
AU  - P. Domański
AU  - D Vogt
TI  - A splitting theory for the space of distributions
JO  - Studia Mathematica
PY  - 2000
SP  - 57
EP  - 77
VL  - 140
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-140-1-57-77/
DO  - 10.4064/sm-140-1-57-77
LA  - en
ID  - 10_4064_sm_140_1_57_77
ER  - 
%0 Journal Article
%A P. Domański
%A D Vogt
%T A splitting theory for the space of distributions
%J Studia Mathematica
%D 2000
%P 57-77
%V 140
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-140-1-57-77/
%R 10.4064/sm-140-1-57-77
%G en
%F 10_4064_sm_140_1_57_77
P. Domański; D Vogt. A splitting theory for the space of distributions. Studia Mathematica, Tome 140 (2000) no. 1, pp. 57-77. doi: 10.4064/sm-140-1-57-77

Cité par Sources :