An asymptotic expansion for the distribution of the supremum of a random walk
Studia Mathematica, Tome 140 (2000) no. 1, pp. 41-55
Let ${S_n}$ be a random walk drifting to -∞. We obtain an asymptotic expansion for the distribution of the supremum of ${S_n}$ which takes into account the influence of the roots of the equation $1-∫_ℝe^{sx}F(dx)=0,F$ being the underlying distribution. An estimate, of considerable generality, is given for the remainder term by means of submultiplicative weight functions. A similar problem for the stationary distribution of an oscillating random walk is also considered. The proofs rely on two general theorems for Laplace transforms.
Keywords:
random walk, supremum, submultiplicative function, characteristic equation, absolutely continuous component, oscillating random walk, stationary distribution, asymptotic expansions, Banach algebras, Laplace transform
@article{10_4064_sm_140_1_41_55,
author = {M. S. Sgibnev},
title = {An asymptotic expansion for the distribution of the supremum of a random walk},
journal = {Studia Mathematica},
pages = {41--55},
year = {2000},
volume = {140},
number = {1},
doi = {10.4064/sm-140-1-41-55},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-140-1-41-55/}
}
TY - JOUR AU - M. S. Sgibnev TI - An asymptotic expansion for the distribution of the supremum of a random walk JO - Studia Mathematica PY - 2000 SP - 41 EP - 55 VL - 140 IS - 1 UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-140-1-41-55/ DO - 10.4064/sm-140-1-41-55 LA - en ID - 10_4064_sm_140_1_41_55 ER -
M. S. Sgibnev. An asymptotic expansion for the distribution of the supremum of a random walk. Studia Mathematica, Tome 140 (2000) no. 1, pp. 41-55. doi: 10.4064/sm-140-1-41-55
Cité par Sources :