A geometrical solution of a problem on wavelets
Studia Mathematica, Tome 139 (2000) no. 3, pp. 261-273
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove the existence of nonseparable, orthonormal, compactly supported wavelet bases for $L^2(ℝ^2)$ of arbitrarily high regularity by using some basic techniques of algebraic and differential geometry. We even obtain a much stronger result: ``most'' of the orthonormal compactly supported wavelet bases for $L^2(ℝ^2)$, of any regularity, are nonseparable
@article{10_4064_sm_139_3_261_273,
author = {Antoine Ayache},
title = {A geometrical solution of a problem on wavelets},
journal = {Studia Mathematica},
pages = {261--273},
publisher = {mathdoc},
volume = {139},
number = {3},
year = {2000},
doi = {10.4064/sm-139-3-261-273},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-139-3-261-273/}
}
TY - JOUR AU - Antoine Ayache TI - A geometrical solution of a problem on wavelets JO - Studia Mathematica PY - 2000 SP - 261 EP - 273 VL - 139 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-139-3-261-273/ DO - 10.4064/sm-139-3-261-273 LA - en ID - 10_4064_sm_139_3_261_273 ER -
Antoine Ayache. A geometrical solution of a problem on wavelets. Studia Mathematica, Tome 139 (2000) no. 3, pp. 261-273. doi: 10.4064/sm-139-3-261-273
Cité par Sources :