A geometrical solution of a problem on wavelets
Studia Mathematica, Tome 139 (2000) no. 3, pp. 261-273

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove the existence of nonseparable, orthonormal, compactly supported wavelet bases for $L^2(ℝ^2)$ of arbitrarily high regularity by using some basic techniques of algebraic and differential geometry. We even obtain a much stronger result: ``most'' of the orthonormal compactly supported wavelet bases for $L^2(ℝ^2)$, of any regularity, are nonseparable
DOI : 10.4064/sm-139-3-261-273

Antoine Ayache 1

1
@article{10_4064_sm_139_3_261_273,
     author = {Antoine Ayache},
     title = {A geometrical solution of a problem on wavelets},
     journal = {Studia Mathematica},
     pages = {261--273},
     publisher = {mathdoc},
     volume = {139},
     number = {3},
     year = {2000},
     doi = {10.4064/sm-139-3-261-273},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-139-3-261-273/}
}
TY  - JOUR
AU  - Antoine Ayache
TI  - A geometrical solution of a problem on wavelets
JO  - Studia Mathematica
PY  - 2000
SP  - 261
EP  - 273
VL  - 139
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-139-3-261-273/
DO  - 10.4064/sm-139-3-261-273
LA  - en
ID  - 10_4064_sm_139_3_261_273
ER  - 
%0 Journal Article
%A Antoine Ayache
%T A geometrical solution of a problem on wavelets
%J Studia Mathematica
%D 2000
%P 261-273
%V 139
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-139-3-261-273/
%R 10.4064/sm-139-3-261-273
%G en
%F 10_4064_sm_139_3_261_273
Antoine Ayache. A geometrical solution of a problem on wavelets. Studia Mathematica, Tome 139 (2000) no. 3, pp. 261-273. doi: 10.4064/sm-139-3-261-273

Cité par Sources :