Composition operators: $N_α$ to the Bloch space to $Q_β$
Studia Mathematica, Tome 139 (2000) no. 3, pp. 245-260
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $N_α$,B and Q_β be the weighted Nevanlinna space, the Bloch space and the Q space, respectively. Note that B and $Q_β$ are Möbius invariant, but $N_α$ is not. We characterize, in function-theoretic terms, when the composition operator $C_ϕ f=f◦ϕ$ induced by an analytic self-map ϕ of the unit disk defines an operator $C_ϕ:N_α→B$, $B→Q_β$, $N_α→Q_β$ which is bounded resp. compact.
Keywords:
composition operator, boundedness, compactness, $N_α$, β, Q_β
Affiliations des auteurs :
Jie Xiao 1
@article{10_4064_sm_139_3_245_260,
author = {Jie Xiao},
title = {Composition operators: $N_\ensuremath{\alpha}$ to the {Bloch} space to $Q_\ensuremath{\beta}$},
journal = {Studia Mathematica},
pages = {245--260},
publisher = {mathdoc},
volume = {139},
number = {3},
year = {2000},
doi = {10.4064/sm-139-3-245-260},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-139-3-245-260/}
}
TY - JOUR AU - Jie Xiao TI - Composition operators: $N_α$ to the Bloch space to $Q_β$ JO - Studia Mathematica PY - 2000 SP - 245 EP - 260 VL - 139 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-139-3-245-260/ DO - 10.4064/sm-139-3-245-260 LA - en ID - 10_4064_sm_139_3_245_260 ER -
Jie Xiao. Composition operators: $N_α$ to the Bloch space to $Q_β$. Studia Mathematica, Tome 139 (2000) no. 3, pp. 245-260. doi: 10.4064/sm-139-3-245-260
Cité par Sources :