Composition operators: $N_α$ to the Bloch space to $Q_β$
Studia Mathematica, Tome 139 (2000) no. 3, pp. 245-260

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $N_α$,B and Q_β be the weighted Nevanlinna space, the Bloch space and the Q space, respectively. Note that B and $Q_β$ are Möbius invariant, but $N_α$ is not. We characterize, in function-theoretic terms, when the composition operator $C_ϕ f=f◦ϕ$ induced by an analytic self-map ϕ of the unit disk defines an operator $C_ϕ:N_α→B$, $B→Q_β$, $N_α→Q_β$ which is bounded resp. compact.
DOI : 10.4064/sm-139-3-245-260
Keywords: composition operator, boundedness, compactness, $N_α$, β, Q_β

Jie Xiao 1

1
@article{10_4064_sm_139_3_245_260,
     author = {Jie Xiao},
     title = {Composition operators: $N_\ensuremath{\alpha}$ to the {Bloch} space to $Q_\ensuremath{\beta}$},
     journal = {Studia Mathematica},
     pages = {245--260},
     publisher = {mathdoc},
     volume = {139},
     number = {3},
     year = {2000},
     doi = {10.4064/sm-139-3-245-260},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-139-3-245-260/}
}
TY  - JOUR
AU  - Jie Xiao
TI  - Composition operators: $N_α$ to the Bloch space to $Q_β$
JO  - Studia Mathematica
PY  - 2000
SP  - 245
EP  - 260
VL  - 139
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-139-3-245-260/
DO  - 10.4064/sm-139-3-245-260
LA  - en
ID  - 10_4064_sm_139_3_245_260
ER  - 
%0 Journal Article
%A Jie Xiao
%T Composition operators: $N_α$ to the Bloch space to $Q_β$
%J Studia Mathematica
%D 2000
%P 245-260
%V 139
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-139-3-245-260/
%R 10.4064/sm-139-3-245-260
%G en
%F 10_4064_sm_139_3_245_260
Jie Xiao. Composition operators: $N_α$ to the Bloch space to $Q_β$. Studia Mathematica, Tome 139 (2000) no. 3, pp. 245-260. doi: 10.4064/sm-139-3-245-260

Cité par Sources :