Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields
Studia Mathematica, Tome 139 (2000) no. 3, pp. 213-244

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We study the notion of fractional $L^p$-differentiability of order $s∈(0,1)$ along vector fields satisfying the Hörmander condition on $ℝ^n$. We prove a modified version of the celebrated structure theorem for the Carnot-Carathéodory balls originally due to Nagel, Stein and Wainger. This result enables us to demonstrate that different $W^{s,p}$-norms are equivalent. We also prove a local embedding $W^{1,p} ⊂ W^{s,q}$, where q is a suitable exponent greater than p.
DOI : 10.4064/sm-139-3-213-244

Daniele Morbidelli 1

1
@article{10_4064_sm_139_3_213_244,
     author = {Daniele Morbidelli},
     title = {Fractional {Sobolev} norms and structure of {Carnot-Carath\'eodory} balls for {H\"ormander} vector fields},
     journal = {Studia Mathematica},
     pages = {213--244},
     publisher = {mathdoc},
     volume = {139},
     number = {3},
     year = {2000},
     doi = {10.4064/sm-139-3-213-244},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-139-3-213-244/}
}
TY  - JOUR
AU  - Daniele Morbidelli
TI  - Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields
JO  - Studia Mathematica
PY  - 2000
SP  - 213
EP  - 244
VL  - 139
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-139-3-213-244/
DO  - 10.4064/sm-139-3-213-244
LA  - fr
ID  - 10_4064_sm_139_3_213_244
ER  - 
%0 Journal Article
%A Daniele Morbidelli
%T Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields
%J Studia Mathematica
%D 2000
%P 213-244
%V 139
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-139-3-213-244/
%R 10.4064/sm-139-3-213-244
%G fr
%F 10_4064_sm_139_3_213_244
Daniele Morbidelli. Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields. Studia Mathematica, Tome 139 (2000) no. 3, pp. 213-244. doi: 10.4064/sm-139-3-213-244

Cité par Sources :