Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields
    
    
  
  
  
      
      
      
        
Studia Mathematica, Tome 139 (2000) no. 3, pp. 213-244
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
            
              We study the notion of fractional $L^p$-differentiability of order $s∈(0,1)$ along vector fields satisfying the Hörmander condition on $ℝ^n$. We prove a modified version of the celebrated structure theorem for the Carnot-Carathéodory balls originally due to Nagel, Stein and Wainger. This result enables us to demonstrate that different $W^{s,p}$-norms are equivalent. We also prove a local embedding $W^{1,p} ⊂ W^{s,q}$, where q is a suitable exponent greater than p.
            
            
            
          
        
      @article{10_4064_sm_139_3_213_244,
     author = {Daniele Morbidelli},
     title = {Fractional {Sobolev} norms and structure of {Carnot-Carath\'eodory} balls for {H\"ormander} vector fields},
     journal = {Studia Mathematica},
     pages = {213--244},
     publisher = {mathdoc},
     volume = {139},
     number = {3},
     year = {2000},
     doi = {10.4064/sm-139-3-213-244},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-139-3-213-244/}
}
                      
                      
                    TY - JOUR AU - Daniele Morbidelli TI - Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields JO - Studia Mathematica PY - 2000 SP - 213 EP - 244 VL - 139 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-139-3-213-244/ DO - 10.4064/sm-139-3-213-244 LA - fr ID - 10_4064_sm_139_3_213_244 ER -
%0 Journal Article %A Daniele Morbidelli %T Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields %J Studia Mathematica %D 2000 %P 213-244 %V 139 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-139-3-213-244/ %R 10.4064/sm-139-3-213-244 %G fr %F 10_4064_sm_139_3_213_244
Daniele Morbidelli. Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields. Studia Mathematica, Tome 139 (2000) no. 3, pp. 213-244. doi: 10.4064/sm-139-3-213-244
Cité par Sources :
