On operator bands
Studia Mathematica, Tome 139 (2000) no. 1, pp. 91-100

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A multiplicative semigroup of idempotent operators is called an operator band. We prove that for each K>1 there exists an irreducible operator band on the Hilbert space $l^2$ which is norm-bounded by K. This implies that there exists an irreducible operator band on a Banach space such that each member has operator norm equal to 1. Given a positive integer r, we introduce a notion of weak r-transitivity of a set of bounded operators on a Banach space. We construct an operator band on $l^2$ that is weakly r-transitive and is not weakly (r+1)-transitive. We also study operator bands S satisfying a polynomial identity p(A, B) = 0 for all non-zero A,B ∈ S, where p is a given polynomial in two non-commuting variables. It turns out that the polynomial $p(A, B) = (A B - B A)^2$ has a special role in these considerations.
DOI : 10.4064/sm-139-1-91-100
Keywords: invariant subspaces, idempotents, operator semigroups

Roman Drnovšek 1 ; Leo Livshits 1 ; Gordon W. MacDonald 1 ; Ben Mathes 1 ; Heydar Radjavi 1 ; Peter Šemrl 1

1
@article{10_4064_sm_139_1_91_100,
     author = {Roman Drnov\v{s}ek and Leo Livshits and Gordon W. MacDonald and Ben Mathes and Heydar Radjavi and Peter \v{S}emrl},
     title = {On operator bands},
     journal = {Studia Mathematica},
     pages = {91--100},
     publisher = {mathdoc},
     volume = {139},
     number = {1},
     year = {2000},
     doi = {10.4064/sm-139-1-91-100},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-139-1-91-100/}
}
TY  - JOUR
AU  - Roman Drnovšek
AU  - Leo Livshits
AU  - Gordon W. MacDonald
AU  - Ben Mathes
AU  - Heydar Radjavi
AU  - Peter Šemrl
TI  - On operator bands
JO  - Studia Mathematica
PY  - 2000
SP  - 91
EP  - 100
VL  - 139
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-139-1-91-100/
DO  - 10.4064/sm-139-1-91-100
LA  - en
ID  - 10_4064_sm_139_1_91_100
ER  - 
%0 Journal Article
%A Roman Drnovšek
%A Leo Livshits
%A Gordon W. MacDonald
%A Ben Mathes
%A Heydar Radjavi
%A Peter Šemrl
%T On operator bands
%J Studia Mathematica
%D 2000
%P 91-100
%V 139
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-139-1-91-100/
%R 10.4064/sm-139-1-91-100
%G en
%F 10_4064_sm_139_1_91_100
Roman Drnovšek; Leo Livshits; Gordon W. MacDonald; Ben Mathes; Heydar Radjavi; Peter Šemrl. On operator bands. Studia Mathematica, Tome 139 (2000) no. 1, pp. 91-100. doi: 10.4064/sm-139-1-91-100

Cité par Sources :