On operator bands
Studia Mathematica, Tome 139 (2000) no. 1, pp. 91-100
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A multiplicative semigroup of idempotent operators is called an operator band. We prove that for each K>1 there exists an irreducible operator band on the Hilbert space $l^2$ which is norm-bounded by K. This implies that there exists an irreducible operator band on a Banach space such that each member has operator norm equal to 1. Given a positive integer r, we introduce a notion of weak r-transitivity of a set of bounded operators on a Banach space. We construct an operator band on $l^2$ that is weakly r-transitive and is not weakly (r+1)-transitive. We also study operator bands S satisfying a polynomial identity p(A, B) = 0 for all non-zero A,B ∈ S, where p is a given polynomial in two non-commuting variables. It turns out that the polynomial $p(A, B) = (A B - B A)^2$ has a special role in these considerations.
Keywords:
invariant subspaces, idempotents, operator semigroups
Affiliations des auteurs :
Roman Drnovšek 1 ; Leo Livshits 1 ; Gordon W. MacDonald 1 ; Ben Mathes 1 ; Heydar Radjavi 1 ; Peter Šemrl 1
@article{10_4064_sm_139_1_91_100,
author = {Roman Drnov\v{s}ek and Leo Livshits and Gordon W. MacDonald and Ben Mathes and Heydar Radjavi and Peter \v{S}emrl},
title = {On operator bands},
journal = {Studia Mathematica},
pages = {91--100},
publisher = {mathdoc},
volume = {139},
number = {1},
year = {2000},
doi = {10.4064/sm-139-1-91-100},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-139-1-91-100/}
}
TY - JOUR AU - Roman Drnovšek AU - Leo Livshits AU - Gordon W. MacDonald AU - Ben Mathes AU - Heydar Radjavi AU - Peter Šemrl TI - On operator bands JO - Studia Mathematica PY - 2000 SP - 91 EP - 100 VL - 139 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-139-1-91-100/ DO - 10.4064/sm-139-1-91-100 LA - en ID - 10_4064_sm_139_1_91_100 ER -
%0 Journal Article %A Roman Drnovšek %A Leo Livshits %A Gordon W. MacDonald %A Ben Mathes %A Heydar Radjavi %A Peter Šemrl %T On operator bands %J Studia Mathematica %D 2000 %P 91-100 %V 139 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-139-1-91-100/ %R 10.4064/sm-139-1-91-100 %G en %F 10_4064_sm_139_1_91_100
Roman Drnovšek; Leo Livshits; Gordon W. MacDonald; Ben Mathes; Heydar Radjavi; Peter Šemrl. On operator bands. Studia Mathematica, Tome 139 (2000) no. 1, pp. 91-100. doi: 10.4064/sm-139-1-91-100
Cité par Sources :