Two-parameter Hardy-Littlewood inequality and its variants
Studia Mathematica, Tome 139 (2000) no. 1, pp. 9-27 Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences

Voir la notice de l'article

Let s* denote the maximal function associated with the rectangular partial sums $s_{mn}(x,y)$ of a given double function series with coefficients $c_{jk}$. The following generalized Hardy-Littlewood inequality is investigated: $||s*||_{p,μ}≤C_{p,α,β} {Σ_{j=0}^∞Σ_{k=0}^∞(j̅ )^{p-α-2}(k̅)^{p-β-2}|c_{jk}|^p }^{1/p}$, where ξ̅=max(ξ,1), 0 p ∞, and μ is a suitable positive Borel measure. We give sufficient conditions on $c_{jk}$ and μ under which the above Hardy-Littlewood inequality holds. Several variants of this inequality are also examined. As a consequence, the ||·||_{p,μ}-convergence property of $s_{mn}(x,y)$ is established. These results generalize the work of Askey-Wainger [1], Balashov [2], Boas [3], Chen [5], [6], [8], [9], Marzug [15], Móricz [16]-[18], [19], Móricz-Schipp-Wade [20], Ram-Bhatia [22], Stechkin [24], Weisz [26]-[28], and Young [30].
@article{10_4064_sm_139_1_9_27,
     author = {Chang-Pao Chen},
     title = {Two-parameter {Hardy-Littlewood} inequality and its variants},
     journal = {Studia Mathematica},
     pages = {9--27},
     year = {2000},
     volume = {139},
     number = {1},
     doi = {10.4064/sm-139-1-9-27},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-139-1-9-27/}
}
TY  - JOUR
AU  - Chang-Pao Chen
TI  - Two-parameter Hardy-Littlewood inequality and its variants
JO  - Studia Mathematica
PY  - 2000
SP  - 9
EP  - 27
VL  - 139
IS  - 1
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-139-1-9-27/
DO  - 10.4064/sm-139-1-9-27
LA  - en
ID  - 10_4064_sm_139_1_9_27
ER  - 
%0 Journal Article
%A Chang-Pao Chen
%T Two-parameter Hardy-Littlewood inequality and its variants
%J Studia Mathematica
%D 2000
%P 9-27
%V 139
%N 1
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-139-1-9-27/
%R 10.4064/sm-139-1-9-27
%G en
%F 10_4064_sm_139_1_9_27
Chang-Pao Chen. Two-parameter Hardy-Littlewood inequality and its variants. Studia Mathematica, Tome 139 (2000) no. 1, pp. 9-27. doi: 10.4064/sm-139-1-9-27

Cité par Sources :