The $L^p$ solvability of the Dirichlet problems for parabolic equations
Studia Mathematica, Tome 139 (2000) no. 1, pp. 69-80
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For two general second order parabolic equations in divergence form in Lip(1,1/2) cylinders, we give a criterion for the preservation of $L^p$ solvability of the Dirichlet problems.
Keywords:
parabolic equation, $L^p$ solvability, Dirichlet problems, Lip(1, 1/2) cylinder
Affiliations des auteurs :
Xiang Xing Tao 1
@article{10_4064_sm_139_1_69_80,
author = {Xiang Xing Tao},
title = {The $L^p$ solvability of the {Dirichlet} problems for parabolic equations},
journal = {Studia Mathematica},
pages = {69--80},
publisher = {mathdoc},
volume = {139},
number = {1},
year = {2000},
doi = {10.4064/sm-139-1-69-80},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-139-1-69-80/}
}
TY - JOUR AU - Xiang Xing Tao TI - The $L^p$ solvability of the Dirichlet problems for parabolic equations JO - Studia Mathematica PY - 2000 SP - 69 EP - 80 VL - 139 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-139-1-69-80/ DO - 10.4064/sm-139-1-69-80 LA - en ID - 10_4064_sm_139_1_69_80 ER -
Xiang Xing Tao. The $L^p$ solvability of the Dirichlet problems for parabolic equations. Studia Mathematica, Tome 139 (2000) no. 1, pp. 69-80. doi: 10.4064/sm-139-1-69-80
Cité par Sources :