The $L^p$ solvability of the Dirichlet problems for parabolic equations
Studia Mathematica, Tome 139 (2000) no. 1, pp. 69-80

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For two general second order parabolic equations in divergence form in Lip(1,1/2) cylinders, we give a criterion for the preservation of $L^p$ solvability of the Dirichlet problems.
DOI : 10.4064/sm-139-1-69-80
Keywords: parabolic equation, $L^p$ solvability, Dirichlet problems, Lip(1, 1/2) cylinder

Xiang Xing Tao 1

1
@article{10_4064_sm_139_1_69_80,
     author = {Xiang Xing Tao},
     title = {The $L^p$ solvability of the {Dirichlet} problems for parabolic equations},
     journal = {Studia Mathematica},
     pages = {69--80},
     publisher = {mathdoc},
     volume = {139},
     number = {1},
     year = {2000},
     doi = {10.4064/sm-139-1-69-80},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-139-1-69-80/}
}
TY  - JOUR
AU  - Xiang Xing Tao
TI  - The $L^p$ solvability of the Dirichlet problems for parabolic equations
JO  - Studia Mathematica
PY  - 2000
SP  - 69
EP  - 80
VL  - 139
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-139-1-69-80/
DO  - 10.4064/sm-139-1-69-80
LA  - en
ID  - 10_4064_sm_139_1_69_80
ER  - 
%0 Journal Article
%A Xiang Xing Tao
%T The $L^p$ solvability of the Dirichlet problems for parabolic equations
%J Studia Mathematica
%D 2000
%P 69-80
%V 139
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-139-1-69-80/
%R 10.4064/sm-139-1-69-80
%G en
%F 10_4064_sm_139_1_69_80
Xiang Xing Tao. The $L^p$ solvability of the Dirichlet problems for parabolic equations. Studia Mathematica, Tome 139 (2000) no. 1, pp. 69-80. doi: 10.4064/sm-139-1-69-80

Cité par Sources :