Régularité Besov-Orlicz du temps local Brownien
Studia Mathematica, Tome 139 (2000) no. 1, pp. 1-7

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $(B_t, t ∈[0,1] )$ be a linear Brownian motion starting from 0 and denote by $(L_t(x), t ≥ 0, x ∈ ℝ)$ its local time. We prove that the spatial trajectories of the Brownian local time have the same Besov-Orlicz regularity as the Brownian motion itself (i.e. for all t>0, a.s. the function $ x → L_t(x) $ belongs to the Besov-Orlicz space $B^{1/2}_{M_2,∞}$ with $M_2(x)= e^{|x|^2}-1$). Our result is optimal.
DOI : 10.4064/sm-139-1-1-7

Yue Yun Hu 1 ;  1

1
@article{10_4064_sm_139_1_1_7,
     author = {Yue Yun Hu and  },
     title = {R\'egularit\'e {Besov-Orlicz} du temps local {Brownien}},
     journal = {Studia Mathematica},
     pages = {1--7},
     publisher = {mathdoc},
     volume = {139},
     number = {1},
     year = {2000},
     doi = {10.4064/sm-139-1-1-7},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-139-1-1-7/}
}
TY  - JOUR
AU  - Yue Yun Hu
AU  -  
TI  - Régularité Besov-Orlicz du temps local Brownien
JO  - Studia Mathematica
PY  - 2000
SP  - 1
EP  - 7
VL  - 139
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-139-1-1-7/
DO  - 10.4064/sm-139-1-1-7
LA  - fr
ID  - 10_4064_sm_139_1_1_7
ER  - 
%0 Journal Article
%A Yue Yun Hu
%A  
%T Régularité Besov-Orlicz du temps local Brownien
%J Studia Mathematica
%D 2000
%P 1-7
%V 139
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-139-1-1-7/
%R 10.4064/sm-139-1-1-7
%G fr
%F 10_4064_sm_139_1_1_7
Yue Yun Hu;  . Régularité Besov-Orlicz du temps local Brownien. Studia Mathematica, Tome 139 (2000) no. 1, pp. 1-7. doi: 10.4064/sm-139-1-1-7

Cité par Sources :