Régularité Besov-Orlicz du temps local Brownien
Studia Mathematica, Tome 139 (2000) no. 1, pp. 1-7
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $(B_t, t ∈[0,1] )$ be a linear Brownian motion starting from 0 and denote by $(L_t(x), t ≥ 0, x ∈ ℝ)$ its local time. We prove that the spatial trajectories of the Brownian local time have the same Besov-Orlicz regularity as the Brownian motion itself (i.e. for all t>0, a.s. the function $ x → L_t(x) $ belongs to the Besov-Orlicz space $B^{1/2}_{M_2,∞}$ with $M_2(x)= e^{|x|^2}-1$). Our result is optimal.
@article{10_4064_sm_139_1_1_7,
author = {Yue Yun Hu and },
title = {R\'egularit\'e {Besov-Orlicz} du temps local {Brownien}},
journal = {Studia Mathematica},
pages = {1--7},
publisher = {mathdoc},
volume = {139},
number = {1},
year = {2000},
doi = {10.4064/sm-139-1-1-7},
language = {fr},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-139-1-1-7/}
}
Yue Yun Hu; . Régularité Besov-Orlicz du temps local Brownien. Studia Mathematica, Tome 139 (2000) no. 1, pp. 1-7. doi: 10.4064/sm-139-1-1-7
Cité par Sources :