A sharp rearrangement inequality for the fractional maximal operator
Studia Mathematica, Tome 138 (2000) no. 3, pp. 277-284
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove a sharp pointwise estimate of the nonincreasing rearrangement of the fractional maximal function of ⨍, $M_{γ}⨍$, by an expression involving the nonincreasing rearrangement of ⨍. This estimate is used to obtain necessary and sufficient conditions for the boundedness of $M_γ$ between classical Lorentz spaces.
Keywords:
fractional maximal operator, nonincreasing rearrangement, classical Lorentz spaces, weighted norm inequalities
Affiliations des auteurs :
A. Cianchi 1 ;  1 ;  1 ;  1
@article{10_4064_sm_138_3_277_284,
author = {A. Cianchi and and and },
title = {A sharp rearrangement inequality for the fractional maximal operator},
journal = {Studia Mathematica},
pages = {277--284},
publisher = {mathdoc},
volume = {138},
number = {3},
year = {2000},
doi = {10.4064/sm-138-3-277-284},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-277-284/}
}
TY - JOUR AU - A. Cianchi AU - AU - AU - TI - A sharp rearrangement inequality for the fractional maximal operator JO - Studia Mathematica PY - 2000 SP - 277 EP - 284 VL - 138 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-277-284/ DO - 10.4064/sm-138-3-277-284 LA - en ID - 10_4064_sm_138_3_277_284 ER -
%0 Journal Article %A A. Cianchi %A %A %A %T A sharp rearrangement inequality for the fractional maximal operator %J Studia Mathematica %D 2000 %P 277-284 %V 138 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-277-284/ %R 10.4064/sm-138-3-277-284 %G en %F 10_4064_sm_138_3_277_284
A. Cianchi; ; ; . A sharp rearrangement inequality for the fractional maximal operator. Studia Mathematica, Tome 138 (2000) no. 3, pp. 277-284. doi: 10.4064/sm-138-3-277-284
Cité par Sources :