A sharp rearrangement inequality for the fractional maximal operator
Studia Mathematica, Tome 138 (2000) no. 3, pp. 277-284

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We prove a sharp pointwise estimate of the nonincreasing rearrangement of the fractional maximal function of ⨍, $M_{γ}⨍$, by an expression involving the nonincreasing rearrangement of ⨍. This estimate is used to obtain necessary and sufficient conditions for the boundedness of $M_γ$ between classical Lorentz spaces.
DOI : 10.4064/sm-138-3-277-284
Keywords: fractional maximal operator, nonincreasing rearrangement, classical Lorentz spaces, weighted norm inequalities

A. Cianchi 1 ;  1 ;  1 ;  1

1
@article{10_4064_sm_138_3_277_284,
     author = {A. Cianchi and   and   and  },
     title = {A sharp rearrangement inequality for the fractional maximal operator},
     journal = {Studia Mathematica},
     pages = {277--284},
     publisher = {mathdoc},
     volume = {138},
     number = {3},
     year = {2000},
     doi = {10.4064/sm-138-3-277-284},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-277-284/}
}
TY  - JOUR
AU  - A. Cianchi
AU  -  
AU  -  
AU  -  
TI  - A sharp rearrangement inequality for the fractional maximal operator
JO  - Studia Mathematica
PY  - 2000
SP  - 277
EP  - 284
VL  - 138
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-277-284/
DO  - 10.4064/sm-138-3-277-284
LA  - en
ID  - 10_4064_sm_138_3_277_284
ER  - 
%0 Journal Article
%A A. Cianchi
%A  
%A  
%A  
%T A sharp rearrangement inequality for the fractional maximal operator
%J Studia Mathematica
%D 2000
%P 277-284
%V 138
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-277-284/
%R 10.4064/sm-138-3-277-284
%G en
%F 10_4064_sm_138_3_277_284
A. Cianchi;  ;  ;  . A sharp rearrangement inequality for the fractional maximal operator. Studia Mathematica, Tome 138 (2000) no. 3, pp. 277-284. doi: 10.4064/sm-138-3-277-284

Cité par Sources :