Partial retractions for weighted Hardy spaces
Studia Mathematica, Tome 138 (2000) no. 3, pp. 251-264
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let 1 ≤ p ≤ ∞ and let $w_0, w_1$ be two weights on the unit circle such that $log(w_0w_1^{-1})∈ BMO$. We prove that the couple $(H_p(w_0), H_p(w_1))$ of weighted Hardy spaces is a partial retract of $(L_p(w_0), L_p(w_1))$. This completes previous work of the authors. More generally, we have a similar result for finite families of weighted Hardy spaces. We include some applications to interpolation.
Keywords:
partial retraction, interpolation, weighted Hardy space, BMO
@article{10_4064_sm_138_3_251_264,
author = {Sergei Kisliakov and },
title = {Partial retractions for weighted {Hardy} spaces},
journal = {Studia Mathematica},
pages = {251--264},
year = {2000},
volume = {138},
number = {3},
doi = {10.4064/sm-138-3-251-264},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-251-264/}
}
Sergei Kisliakov; . Partial retractions for weighted Hardy spaces. Studia Mathematica, Tome 138 (2000) no. 3, pp. 251-264. doi: 10.4064/sm-138-3-251-264
Cité par Sources :