Partial retractions for weighted Hardy spaces
Studia Mathematica, Tome 138 (2000) no. 3, pp. 251-264

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let 1 ≤ p ≤ ∞ and let $w_0, w_1$ be two weights on the unit circle such that $log(w_0w_1^{-1})∈ BMO$. We prove that the couple $(H_p(w_0), H_p(w_1))$ of weighted Hardy spaces is a partial retract of $(L_p(w_0), L_p(w_1))$. This completes previous work of the authors. More generally, we have a similar result for finite families of weighted Hardy spaces. We include some applications to interpolation.
DOI : 10.4064/sm-138-3-251-264
Keywords: partial retraction, interpolation, weighted Hardy space, BMO

Sergei Kisliakov 1 ;  1

1
@article{10_4064_sm_138_3_251_264,
     author = {Sergei Kisliakov and  },
     title = {Partial retractions for weighted {Hardy} spaces},
     journal = {Studia Mathematica},
     pages = {251--264},
     publisher = {mathdoc},
     volume = {138},
     number = {3},
     year = {2000},
     doi = {10.4064/sm-138-3-251-264},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-251-264/}
}
TY  - JOUR
AU  - Sergei Kisliakov
AU  -  
TI  - Partial retractions for weighted Hardy spaces
JO  - Studia Mathematica
PY  - 2000
SP  - 251
EP  - 264
VL  - 138
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-251-264/
DO  - 10.4064/sm-138-3-251-264
LA  - en
ID  - 10_4064_sm_138_3_251_264
ER  - 
%0 Journal Article
%A Sergei Kisliakov
%A  
%T Partial retractions for weighted Hardy spaces
%J Studia Mathematica
%D 2000
%P 251-264
%V 138
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-251-264/
%R 10.4064/sm-138-3-251-264
%G en
%F 10_4064_sm_138_3_251_264
Sergei Kisliakov;  . Partial retractions for weighted Hardy spaces. Studia Mathematica, Tome 138 (2000) no. 3, pp. 251-264. doi: 10.4064/sm-138-3-251-264

Cité par Sources :