Universal images of universal elements
Studia Mathematica, Tome 138 (2000) no. 3, pp. 241-250
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We furnish several necessary and sufficient conditions for the following property: For a topological space X, a continuous selfmapping S of X and a family τ of continuous selfmappings of X, the image under S of every τ-universal element is also τ-universal. An application in operator theory, where we extend results of Bourdon, Herrero, Bes, Herzog and Lemmert, is given. In particular, it is proved that every hypercyclic operator on a real or complex Banach space has a dense invariant linear manifold with maximal algebraic dimension consisting, apart from zero, of vectors which are hypercyclic.
Keywords:
universal element, almost commutativity, universal image, dense range, dense hypercyclic manifold, point spectrum of the adjoint, analytic function of an operator, real entire function, maximal dimension
Affiliations des auteurs :
Luis Bernal-González 1
@article{10_4064_sm_138_3_241_250,
author = {Luis Bernal-Gonz\'alez},
title = {Universal images of universal elements},
journal = {Studia Mathematica},
pages = {241--250},
publisher = {mathdoc},
volume = {138},
number = {3},
year = {2000},
doi = {10.4064/sm-138-3-241-250},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-241-250/}
}
TY - JOUR AU - Luis Bernal-González TI - Universal images of universal elements JO - Studia Mathematica PY - 2000 SP - 241 EP - 250 VL - 138 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-241-250/ DO - 10.4064/sm-138-3-241-250 LA - en ID - 10_4064_sm_138_3_241_250 ER -
Luis Bernal-González. Universal images of universal elements. Studia Mathematica, Tome 138 (2000) no. 3, pp. 241-250. doi: 10.4064/sm-138-3-241-250
Cité par Sources :