Universal images of universal elements
Studia Mathematica, Tome 138 (2000) no. 3, pp. 241-250

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We furnish several necessary and sufficient conditions for the following property: For a topological space X, a continuous selfmapping S of X and a family τ of continuous selfmappings of X, the image under S of every τ-universal element is also τ-universal. An application in operator theory, where we extend results of Bourdon, Herrero, Bes, Herzog and Lemmert, is given. In particular, it is proved that every hypercyclic operator on a real or complex Banach space has a dense invariant linear manifold with maximal algebraic dimension consisting, apart from zero, of vectors which are hypercyclic.
DOI : 10.4064/sm-138-3-241-250
Keywords: universal element, almost commutativity, universal image, dense range, dense hypercyclic manifold, point spectrum of the adjoint, analytic function of an operator, real entire function, maximal dimension

Luis Bernal-González 1

1
@article{10_4064_sm_138_3_241_250,
     author = {Luis Bernal-Gonz\'alez},
     title = {Universal images of universal elements},
     journal = {Studia Mathematica},
     pages = {241--250},
     publisher = {mathdoc},
     volume = {138},
     number = {3},
     year = {2000},
     doi = {10.4064/sm-138-3-241-250},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-241-250/}
}
TY  - JOUR
AU  - Luis Bernal-González
TI  - Universal images of universal elements
JO  - Studia Mathematica
PY  - 2000
SP  - 241
EP  - 250
VL  - 138
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-241-250/
DO  - 10.4064/sm-138-3-241-250
LA  - en
ID  - 10_4064_sm_138_3_241_250
ER  - 
%0 Journal Article
%A Luis Bernal-González
%T Universal images of universal elements
%J Studia Mathematica
%D 2000
%P 241-250
%V 138
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/sm-138-3-241-250/
%R 10.4064/sm-138-3-241-250
%G en
%F 10_4064_sm_138_3_241_250
Luis Bernal-González. Universal images of universal elements. Studia Mathematica, Tome 138 (2000) no. 3, pp. 241-250. doi: 10.4064/sm-138-3-241-250

Cité par Sources :